Die Mathe-Redaktion - 13.12.2019 23:08 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 253 Gäste und 18 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Mathematik: Anzahl der Abbildungen $f$ mit $f^p = f^q$
Freigegeben von matroid am Fr. 13. Dezember 2019 21:45:02
Verfasst von Triceratops - (30 x gelesen)
Mathematik  \(\begingroup\)

Anzahl der Abbildungen $f$ mit $f^p=f^q$

Für feste natürliche Zahlen $n,p,q$ bestimmen wir die Anzahl der Abbildungen $f : \{1,\dotsc,n\} \to \{1,\dotsc,n\}$ mit $f^p = f^q$, wobei $f^p$ die $p$-fache Verkettung von $f$ sei. Wir leiten insbesondere für festes $p \geq 2$ und $q=1$ die erzeugende Funktion $\exp(\sum_{d ~\mid~ p-1} \frac{1}{d} (z \cdot \exp(z))^d)$ für die Anzahlen her. Am Ende zeigen wir eine alternative Herleitung auf, die mit kombinatorischen Spezies arbeitet. Das folgende Bild zeigt zum Beispiel eine Abbildung $f$ mit $f^6=f^2$.

<math>
\newcommand{\rdot}{\textcolor{red}{$\bullet$}}
\newcommand{\bdot}{\textcolor{blue}{$\bullet$}}
\begin{tikzpicture}[inner sep=0pt,>=latex]
\node (W1) at (0,1) {\bdot};
\node (W2) at (1,1.8) {\bdot};
\node (W3) at (2,1) {\bdot};
\node (W4) at (1,0.2) {\bdot};
\node (A1) at (-1.1,1) {\rdot};
\node (A2) at (-2,2) {\rdot};
\node (A3) at (-2,0) {\rdot};
\node (B1) at (3.2,2) {\rdot};
\node (B2) at (3.2,0) {\rdot};
\draw [blue,->] (W1) to (W2);
\draw [blue,->] (W2) to (W3);
\draw [blue,->] (W3) to (W4);
\draw [blue,->] (W4) to (W1);
\draw [red,->] (A1) to (W1);
\draw [red,->,bend right=10] (A2) to (A1);
\draw [red,->,bend left=10] (A3) to (A1);
\draw [red,->,bend left=10] (B1) to (W3);
\draw [red,->,bend right=10] (B2) to (W3);
\end{tikzpicture}</math>
\(\endgroup\)
mehr... | 37131 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


Mathematik: Ein schwieriges Problem auf der IMO
Freigegeben von matroid am So. 08. Dezember 2019 08:36:17
Verfasst von trunx - (865 x gelesen)
Mathematik  \(\begingroup\)\(\usepackage{setspace}\)
Auf der Wikipediaseite "Internationale Mathematik-Olympiade" werden die zwei schwersten Probleme genannt, die je auf einer IMO gestellt worden sind. Beide Aufgaben konnten nur von 11 Schülern gelöst werden, einmal (1986) bei insgesamt 210, das zweite Mal (1988) bei insgesamt 268 Teilnehmern.

Während für die erste dieser Aufgaben auch eine Lösung verlinkt wurde, habe ich für die zweite Aufgabe keine Lösung im Internet gefunden (aber auch nicht wirklich intensiv danach gesucht). Da es zudem hieß, dass weder die Mitglieder des Aufgabenausschusses noch von ihnen beauftragte Mathematiker des entsprechenden Fachgebietes (Zahlentheorie) die Aufgabe in 6h lösen konnten, war bei mir das Interesse geweckt.

Die Aufgabe lautete (siehe hier):

Let \(a\) and \(b\) positive integers such that \(ab+1\) divides \(a^2 +b^2\). Show that
\[\frac{a^2 +b^2}{ab+1}\] is the square of an integer.

(dt. lt. wikipedia: Sind \(a\) und \(b\) natürliche Zahlen, sodass \[c=\frac{a^2 +b^2}{ab+1}\] ebenfalls eine natürliche Zahl ist, ist c sogar eine Quadratzahl.)

Ich habe deutlich mehr als 6h für die Lösung gebraucht, aber es hat Spass gemacht. Daher, wer es selbst probieren will, macht jetzt besser den PC aus und rechnet!

Nachtrag: Wie sich in der in den Kommentaren entfalteten Diskussion gezeigt hat, habe ich zwar eine Möglichkeit gefunden, Lösungspaare (a,b) zu berechnen, aber keinen Beweis. \(\endgroup\)
mehr... | 6348 Bytes mehr | 24 Kommentare | Druckbare Version  | Mathematik


Mathematik: Galois-Verbindungen
Freigegeben von matroid am Do. 21. November 2019 22:39:52
Verfasst von Triceratops - (358 x gelesen)
Mathematik  \(\begingroup\)

Galois-Verbindungen

Ausgehend von einer einfachen Beobachtung zwischen der Bildmenge und der Urbildmenge gelangen wir zum Begriff einer Galois-Verbindung. Dieser wird in diesem Artikel untersucht. Wir beweisen einfache Eigenschaften von Galois-Verbindungen und geben ein paar einfache Anwendungen an. Insbesondere finden wir damit einen konzeptionellen Beweis für eine ganze Reihe von Charakterisierungen von injektiven bzw. surjektiven Abbildungen. Im letzten Abschnitt zeigen wir dann die Nützlichkeit von Galois-Korrespondenzen auf, wofür der Hauptsatz der Galoistheorie das prominenteste Beispiel ist. Abgesehen von den Beispielen sind für das Verständnis dieses Artikels lediglich Grundbegriffe der Mengenlehre und der Ordnungstheorie nötig.
\(\endgroup\)
mehr... | 33610 Bytes mehr | 4 Kommentare | Druckbare Version  | Mathematik


Mathematik: 4-reguläre planare Einheits-Dreieck-Graphen
Freigegeben von matroid am Mo. 18. November 2019 21:17:18
Verfasst von Slash - (233 x gelesen)
Mathematik  \(\begingroup\)

Wie man 4-reguläre planare Graphen nur aus kongruenten gleichseitigen Dreiecken konstruiert

Lassen sich kongruente gleichseitige Dreiecke in der Ebene ohne Überschneidungen derart aneinanderlegen, dass sich immer genau zwei Ecken berühren ohne dabei größere Dreiecke zu bilden? Und wenn ja, wie viele Dreiecke benötigt man mindestens dafür?

Eine Aufgabe, die mit entsprechendem Material, etwa kleine Dreiecke aus Pappe, sogar Kinder verstehen und angehen können, deren Lösung aber ganz schön raffiniert ist.
\(\endgroup\)
mehr... | 15022 Bytes mehr | 2 Kommentare | Druckbare Version  | Mathematik


Offene Fragen: Urknall
Freigegeben von matroid am So. 10. November 2019 15:35:22
Verfasst von trunx - (328 x gelesen)
Physik  \(\begingroup\)\(\usepackage{setspace}\)

Der Urknall

Mythischer Anfang


Die Idee des Gewordenseins des Universums ist uralt, in praktisch allen Kulturen gibt es Mythen über einen Anfang der Welt. So beginnt zB. eine rituelle Formel im indogermanischen Schöpfungsmythos:

"Das erfuhr ich unter den Menschen als der Wunder größtes,
dass Erde nicht war, noch Himmel oben,
weder Baum noch Berg noch irgendwas.
Nicht schien die Sonne, nicht leuchtete der Mond,
nicht breitete sich aus das herrliche Meer.
(in der indischen Rigveda folgt:
Weder Sein war damals noch Nichtsein.)
Nichts war - nur geheimnisvoller, tiefer Abgrund."

Dieses Nichts, diese dunkle Leere war kein Vakuum, sondern ein fern jeder Vorstellung mit mächtigen magischen Kräften erfüllter Ort. In der Regel entstanden dort die ersten Riesen oder vorzeitlichen Giganten und die Götter und irgendwann kam es zum Kampf zwischen den beiden, den die Götter gewannen. Aus den Überresten der Giganten erschufen die Götter dann die Welt, so wie wir sie kennen (zB. besteht das Meer oft aus dem Blut eines Riesen) und später auch die Menschen. Die Griechen nannten dieses Nichts das Chaos, im Judentum ist es als Tohuwabohu bekannt.

In der Bibel (AT) beginnt die Sache einfacher: "Am Anfang schuf Gott Himmel und Erde." Gott ist also bereits da und woraus er Himmel und Erde machte, wird nicht erwähnt. Im NT dagegen heisst es "Im Anfang war das Wort." Dieses Wort kann man sich vielleicht besser als Gedanke oder Gedankenblitz denken, sd. der Anfang des Universums in einer besonderen Art Strahlung, dem primären Licht Gottes bestand. Das sekundäre Licht wurde später geschaffen.

Unter den christlichen Gnostikern gab es allerdings eine bezeichnende Idee, aus was Gott die Welt gemacht hat, nämlich aus dem gefallenen Erzengel Lucifer/Satan und seinen Heerscharen. In allem und jedem weltlichen Ding, einschliesslich der Menschen ist lediglich sekundäres Licht, doch durch gute Taten ist Erlösung möglich. Einzig Christus war und brachte das primäre Licht in die Welt.

Nun gut. Machen wir weiter mit Physik. \(\endgroup\)
mehr... | 29917 Bytes mehr | 6 Kommentare | Druckbare Version  | Offene Fragen


Stern Mathematik: Potenzsummen
Freigegeben von matroid am Fr. 30. Mai 2008 20:46:03
Verfasst von trunx - (3917 x gelesen)
Mathematik  \(\begingroup\)\(\usepackage{setspace}\)
fed-Code einblenden
fed-Code einblenden
Einige davon sind bereits auf dem Matheplaneten vorgestellt worden, z.B. im Artikel Endliche Summen oder hier im Forum. Den in diesem Artikel vorgestellten Rechenweg hat Manuel (subdubito) auf dem MPCT VIII skizziert, hier soll er etwas ausführlicher erläutert und zu Ende gebracht werden. \(\endgroup\)
mehr... | 8955 Bytes mehr | 5 Kommentare | Druckbare Version  | Mathematik


Mathematik: Ein paar Ideen zu einer Philosophie der Zeit
Freigegeben von matroid am Do. 31. Oktober 2019 21:08:51
Verfasst von trunx - (601 x gelesen)
Vermischtes  \(\begingroup\)\(\usepackage{setspace}\)

Ein paar Ideen zu einer Philosophie der Zeit



Aus verständlichen Gründen sind philosophische Themen auf dem MP nicht so gern gesehen. Anders als bei mathematischen bzw. physikalischen Aufgabenstellungen kommt man prinzipiell nicht zu einem klaren Ergebnis, sondern verbleibt stets im mitunter äußerst undurchdringlichen Dickicht der Meinungen.

Dennoch mache ich hier mal eine Ausnahme, schließlich bedarf jede Wissenschaft der Philosophie. Trotz ihres spekulativen Charakters liefert die Philosophie letztlich plausible Annahmen über unsere Welt, die wissenschaftliches Denken und Arbeiten erst ermöglichen.

Auch der vorliegende Text handelt von solchen plausiblen Annahmen, nämlich über die Zeit und was daraus folgt. \(\endgroup\)
mehr... | 30607 Bytes mehr | 4 Kommentare | Druckbare Version  | Mathematik


Mathematik: Branch&Bound und Backtracking angewendet auf mehrere Probleme
Freigegeben von matroid am Mo. 09. September 2019 20:27:28
Verfasst von Delastelle - (352 x gelesen)
Informatik  \(\begingroup\)
Branch&Bound und Backtracking werden angewendet auf
1. Sudoku
2. Rundreiseproblem (TSP)
3. Jobschop-Scheduling
4. ein Problem des Euler-Wettbewerbs (crack-free walls)
5. zur Lösung von Labyrinthen
und
6. zur Lösung von Erfüllbarkeitsproblemen (SAT genauer 3SAT)

Fortran-Programme werden zur Lösung der Probleme verwendet.

\(\endgroup\)
mehr... | 10252 Bytes mehr | 1 Kommentar | Druckbare Version  | Mathematik


Mathematik: Die Koch-Schneeflocke
Freigegeben von matroid am Sa. 07. September 2019 20:09:14
Verfasst von Triceratops - (629 x gelesen)
Mathematik  \(\begingroup\)

Die Koch-Schneeflocke

In diesem kurzen Artikel werden die Flächeninhalte der Koch-Kurve und der Koch-Schneeflocke berechnet, ohne Grenzwerte oder unendliche Reihen zu benutzen.

\(\endgroup\)
mehr... | 5517 Bytes mehr | 10 Kommentare | Druckbare Version  | Mathematik


[Weitere 8 Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
Buchbesprechung

Walter, Wolfgang
Analysis 2

Rezensiert von Diophant:
Dieser zweite Band der Analysis-Reihe von Wolfgang Walter erhebt wie auch schon der erste Band den Anspruch, durchaus auch über den Stoff üblicher Vorlesungen zur mehrdimensionalen Analysis hinauszugehen. Die aus dem ersten Band bekannten historischen Abrisse zu Beginn der Kapi ... [mehr...]
: Analysis :: Analysis 2 :: Analysis II :: Lehrbuch :
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]