Mathematik: Nachtrag zum Pi-Tag: Der Fehler von Archimedes
Released by matroid on Mo. 05. April 2021 20:51:12
Written by easymathematics - (504 x read)
Mathematik  \(\begingroup\)\(\newcommand{\ggT}{\mathbb{ggT}}\)

Nachtrag zum Pi-Tag: Der Fehler von Archimedes

In diesem Artikel soll es - anlässlich des Pi-Tags - um einen historischen Meilenstein in der Mathemtatik gehen. Aber "Fehler" und "Archimedes" in einer Überschrift? Wenn jemand 250 v. C. nur mit Stift und Papier die ein oder andere Nachkommastelle von Pi berechnet, können wir dann von "Fehler" reden? Ja! Aber in einem anderen Sinne. Es soll darum gehen ein Gefühl dafür zu bekommen, wie aufwendig sein Vorhaben gewesen sein muss, um diese faszinierende Präzision (bezogen auf seine Zeit) zu bekommen. Vorweg: Der exakte Wert seines 96-Ecks (einbeschrieben) lautet: \[ 48 \sqrt{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{3}}} }} = 3,141031...\] Die Näherung von Archimedes: \[ 3,140845... \] Anders gesagt: Der relative Fehler bezogen auf sein 96-Eck liegt knapp unter 0,006 %. Der relative Fehler zu \(\pi\) liegt knapp über 0,02. Wir wollen in diesem Zusammenhang versuchen, folgende zwei Fragen zu klären. a) Wie konnte Archimedes Rundungsfehler nahezu vermeiden? b) In welcher Zeit ist diese Leistung bei einem gemütlichen Kaffee zu schaffen? Reden wir von Stunden? Von Tagen? Von Wochen? Ja, der Pi-Tag liegt bereits eine gewisse Zeit zurück. Ich bin frischer Vater und da klappen dann solche Planungen dann doch nicht, wie man es möchte. Um Gottes Willen, besser später als nie. Ich freue mich, wenn Ihr mich auf dieser historischen Reise begleitet. \(\endgroup\)
mehr... | 13986 Bytes mehr | 2 Kommentare | Druckbare Version  | Mathematik


Stern Mathematik: Starker Raucher
Released by matroid on Mo. 19. November 2001 00:01:25
Written by matroid - (14152 x read)
Vermischtes  \(\begingroup\)\(\newcommand{\IX}{\mathbb{X}} \newcommand{\IW}{\mathbb{M}} \newcommand{\politician}[1]{\text{Ich habe die Frage nicht verstanden. #1}} \newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}} \newcommand{\on}{\operatorname} \newcommand{\ds}{\displaystyle}\) Stefan Banach war ein starker Raucher (Ja, der mit dem Raum!). Ein Kollege von mir ist auch einer, und der hat immer mindestens 3 Feuerzeuge in der Tasche - nur für den Fall.
Aber Banach lebte in einer Zeit ohne Einweg-Feuerzeuge. In seiner Zeit hatte er vergleichbare Vorsichtsmaßnahmen getroffen. Er hatte nämlich immer 2 Schachteln Streichhölzer dabei - eine in der linken Hosentasche, eine in der rechten. Um eine Zigarette anzuzünden, griff er mit gleicher Wahrscheinlichkeit in eine seiner beiden Hosentaschen, entnahm die dortige Streichholzschachtel und entzündete seine Zigarette. Wenn er eine leere Schachtel gezogen hatte, dann ersetzte er sofort beide Schachteln durch neue, voll gefüllte!
Zündholzschachtel von Matroids Matheplanet

Immer wurden beide Schachteln ersetzt, die eine davon leer, aber was war mit der anderen? In den meisten Fällen wird diese noch einige Hölzer enthalten haben.
Wie groß ist die Wahrscheinlichkeit, daß die weggeworfene zweite Schachtel noch eine bestimmte Anzahl Hölzer enthalten hat? \(\endgroup\)
mehr... | 6239 Bytes mehr | 7 Kommentare | Druckbare Version  | Mathematik


Mathematik: ein Beitrag zur Lösung des Isola-Spiels für kleinere Bretter als 6x8
Released by matroid on So. 04. April 2021 13:02:05
Written by Delastelle - (125 x read)
Spiele+Rätsel  \(\begingroup\) Momentan arbeite ich an einer Betaversion eines Programms zur Erzeugung einer Endspieldatenbank für das Spiel Isola für Bretter bis 4x5 Felder (alle Felder drückbar). Ich habe Ergebnisse für Bretter der Größe 2x3, 3x3, 3x4, 4x4 und 4x5. Eine Überprüfung der Richtigkeit der Ergebnisse steht noch aus. \(\endgroup\)
mehr... | 19372 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


buhs Montagsreport: Ein reverses Phänomen
Released by Leonardo_ver_Wuenschmi on Mo. 22. März 2021 00:00:14
Written by Leonardo_ver_Wuenschmi - (237 x read)
Matroids Matheplanet  \(\begingroup\) Reverses Urlogo für buhs Montagsreport Ein reverses Phänomen Existiert die schwere Zeit? Ruhe.Vor einiger Zeit erzählte mir der Bibliothekar von Fibona eine sehr merkwürdige Geschichte: Unter seinen Büchern habe er eine sehr alte und merkwürdige Schwarte, die von "schwerer Zeit" in Fibona berichtet, gefunden. Das erschien mir äußerst interessant, und so begleitete ich ihn zurück nach Fibona, lieh mir das Werk aus und las es in einem Stück. Noch heute bin ich beeindruckt, aber auch verwirrt: Es soll, so berichtet die Schwarte, vor vielen Jahren in Fibona das Phänomen der sogenannten "schweren Zeit" aufgetreten sein. Schwere Zeit? \(\endgroup\)
mehr... | 2622 Bytes mehr | 1 Kommentar | Druckbare Version  | buhs Montagsreport


Mathematik: Limes-Skizzen und ihre Modell-Kategorien
Released by matroid on Sa. 20. März 2021 11:04:58
Written by Triceratops - (241 x read)
Mathematik  \(\begingroup\)

Limes-Skizzen und ihre Modell-Kategorien

Üblicherweise studiert man universelle Eigenschaften von Objekten innerhalb einer festen Kategorie. Weil aber unter geeigneten Größenannahmen auch Kategorien eine Kategorie bilden (genauer gesagt, eine $2$-Kategorie), kann man auch universelle Eigenschaften von Kategorien selbst untersuchen. Wir beschäftigen uns hier ausschließlich mit kovollständigen Kategorien. Konkret fragen wir uns also, wie sich die kostetigen Funktoren von typischen Kategorien wie zum Beispiel $\mathbf{Mon}$ oder $\mathbf{Pos}$ in eine beliebige kovollständige Kategorie $\mathcal{C}$ klassifizieren lassen. Viele Kategorien aus der Praxis lassen sich als die Kategorie $\mathbf{Mod}(\mathscr{S})$ der Modelle einer Limes-Skizze $\mathscr{S}$ darstellen. Wir werden diese Konzepte in diesem Artikel vorstellen und damit unser Hauptresultat, die universelle Eigenschaft $\mathrm{Hom}_c(\mathbf{Mod}(\mathscr{S}),\mathcal{C}) \simeq \mathbf{Mod}_{\mathcal{C}}(\mathscr{S}^{\mathrm{op}})$ beweisen. Sie besagt im Wesentlichen, dass $\mathbf{Mod}(\mathscr{S})$ das universelle Beispiel einer kovollständigen Kategorie mit einem Modell von $\mathscr{S}^{\mathrm{op}}$ ist. Dann schauen wir uns einige Beispiele wie etwa $\mathrm{Hom}_c(\mathbf{Mon},\mathcal{C}) \simeq \mathbf{CoMon}(\mathcal{C})$ genauer an.
\(\endgroup\)
mehr... | 44305 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


buhs Montagsreport: Unser Planet
Released by matroid on Do. 18. März 2021 00:00:00
Written by buh - (203 x read)
Matroids Matheplanet  \(\begingroup\) Jubilogo in buhs Montagsreport Unser Planet 20 Jahre - 88 Millionen Zinbiel: Tiefschwarze Stille. Tonlose Dunkelheit. Es ist null Uhr. Achtzehnter März. DA! Ein Lichtpunkt an der Stirnwand, blass zunächst, dann langsam, ganz langsam heller werdend. Der Punkt wird ein Bild:
20 von hinten
Eine Kadenz in 3B* erklingt, an allen Wänden flammen Monitore auf, und die 32 Seniolos** \(\endgroup\)
mehr... | 5537 Bytes mehr | 1 Kommentar | Druckbare Version  | buhs Montagsreport


Mathematik: Über die Adjunktion von Wurzeln
Released by matroid on Sa. 20. Februar 2021 08:27:16
Written by Triceratops - (299 x read)
Mathematik  \(\begingroup\)

Über die Adjunktion von Wurzeln

Eine beliebte Aufgabe aus der Algebra ist es, den Grad und die Galoisgruppe von Erweiterungen der Form $\IQ(\sqrt{p},\sqrt{q},\dotsc)$ für konkrete Beispiele von Primzahlen $p,q,\dotsc$ zu bestimmen, zum Beispiel von $\IQ(\sqrt{2},\sqrt{3})$. Außerdem soll oftmals ein primitives Element und dessen Minimalpolynom gefunden werden. In diesem Artikel behandeln wir allgemeiner Erweiterungen der Form $K(\sqrt{\Delta})$ eines Körpers $K$ der Charakteristik $\neq 2$ für beliebige Untergruppen $\Delta \subseteq K^{\times}$. Es handelt sich um einen relativ einfachen Spezialfall der Kummertheorie, nämlich für den Exponenten $2$.
\(\endgroup\)
mehr... | 24512 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


Mathematik: Die radiale Brachistochrone: Think big
Released by matroid on Mo. 01. Februar 2021 22:06:00
Written by MontyPythagoras - (573 x read)
Physik  \(\begingroup\)

Die radiale Brachistochrone: Think big

Brachistochrone AnimationIn meiner Artikelreihe "Physikalisches Wissen, das keiner braucht" möchte ich mich diesmal mit dem beliebten Brachistochronen-Problem befassen. Mit dieser Problemstellung haben sich schon vor mehr als drei Jahrhunderten bekannte Wissenschaftler wie Bernoulli, Leibniz und Newton im homogenen Gravitationsfeld befasst. Also sowohl der betrachtete Körper als auch die Wissenschaftler befanden sich im homogenen Gravitationsfeld - letztere zumindest näherungsweise. Die Lösung dieses Problems, also die schnellstmögliche Fallkurve zwischen zwei Punkten im homogenen Gravitationsfeld ist bekanntermaßen die Zykloide. Auch hier auf dem Matheplaneten hat es dazu schon Artikel gegeben, z.B. hier. Getreu dem Motto "Think big" habe ich mich dagegen damit beschäftigt, wie die Brachistochrone in einem radialen Schwerefeld wie dem eines Planeten aussieht. Dazu war auch im Internet nicht all zu viel zu finden, außer dem Artikel in der Quellenangabe, dessen Autoren sich alle Mühe gegeben haben, das Problem möglichst kompliziert aussehen zu lassen. Es geht aber auch deutlich übersichtlicher. \(\endgroup\)
mehr... | 12328 Bytes mehr | 7 Kommentare | Druckbare Version  | Mathematik


Mathematik: Der logische Zusammenhang zwischen dem Sinussatz und dem Kosinussatz
Released by matroid on Fr. 29. Januar 2021 08:31:10
Written by easymathematics - (1060 x read)
Mathematik  \(\begingroup\)\(\newcommand{\ggT}{\mathbb{ggT}}\)

Der logische Zusammenhang zwischen dem Sinussatz und dem Kosinussatz

Hallo, in diesem Artikel soll es um folgende Fragestellung(en) gehen. (1) Lässt sich der Sinussatz mit Hilfe des Kosinussatzes beweisen? (2) Lässt sich der Kosinussatz mit Hilfe des Sinussatzes beweisen? (3) Sind beide Sätze sogar äquivalent? Die Antwort: Beide Sätze sind äquivalent. Anmerkung: Wir reden hier von Dreiecken in der Ebene. Der Beweis ist, wie man erwarten darf, simpel. Die Aussage als solche dennoch erwähnenswert. \(\endgroup\)
mehr... | 3256 Bytes mehr | 19 Kommentare | Druckbare Version  | Mathematik


[Weitere 8 Artikel] [Neueste Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]