Matroids Matheplanet Forum Index
Moderiert von matroid
Kombinatorik & Graphentheorie » Graphentheorie » Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Thema eröffnet 2016-02-17 22:35 von Slash
Seite 30   [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62]   62 Seiten
Autor
Kein bestimmter Bereich Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1160, vom Themenstarter, eingetragen 2018-04-22

\quoteon(2018-04-22 07:26 - haribo in Beitrag No. 1157) \quoteon(2018-04-22 04:06 - Slash in Beitrag No. 1155) Ein paar Versuche. \geo ebene(552.71,546.71) x(7.51,14.76) y(8.45,15.63) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-189.94515907342895,126.52105737164766]; #P[2]=[-158.66288999063147,57.06840251935653]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #Q(22,12,14,ab(4,5,[1,3]),D); #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(50,13,21); N(51,45,38); N(52,48,25); #N(49,19,44); # #//A(51,39); A(21,49); A(45,49); #N(53,21,49); N(54,49,45); A(50,53); A(51,54); #R(50,53); N(55,50,53); N(56,54,51); R(55,56); A(55,56); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.506381850598322,11.660980498173515,P1) p(7.91705846020423,10.749199426686179,P2) p(8.501345725999105,11.560746339088627,P3) p(8.912022335605014,10.648965267601291,P4) p(8.327735069810139,9.837418355198842,P5) p(9.496309601399888,11.460512180003741,P6) p(8.506360474371549,11.667518999270987,P7) p(8.000708654431852,12.530256640151268,P8) p(9.00068727820508,12.53679514124874,P9) p(8.495035458265383,13.399532782129022,P10) p(9.49501408203861,13.406071283226494,P11) p(8.989362262098913,14.268808924106775,P12) p(9.177917971347915,12.408471445960274,P13) p(10.148522373898254,12.649151926576994,P14) p(9.171335817933919,10.374389283429597,P15) p(9.214565908813574,9.375324140787468,P16) p(10.058166656937354,9.912295069018223,P17) p(10.101396747817008,8.913229926376093,P18) p(10.944997495940788,9.450200854606848,P19) p(10.988227586820441,8.45113571196472,P20) p(10.12307324235763,10.68130274835305,P21) p(9.64287055395856,13.511889567457278,P22) p(10.953893336907836,14.643799132125734,P23) p(9.971627799503374,14.456304028116254,P24) p(10.62513609136302,13.699384671466756,P25) p(14.434267400884602,11.699391071736269,P26) p(14.033726181854735,10.783112330381833,P27) p(13.440476124409098,11.588130572001702,P28) p(13.03993490537923,10.671851830647267,P29) p(13.63318496282487,9.866833589027397,P30) p(12.446684847933593,11.476870072267136,P31) p(13.434277752228844,11.694841062797929,P32) p(13.930332153228676,12.56313250652446,P33) p(12.930342504572922,12.558582497586118,P34) p(13.42639690557275,13.426873941312648,P35) p(12.426407256916992,13.422323932374308,P36) p(12.922461657916825,14.290615376100838,P37) p(12.75454560456243,12.428301496242568,P38) p(11.781332124203969,12.658204783840999,P39) p(12.78368195828414,10.394417369365906,P40) p(12.751532504156728,9.394934296673172,P41) p(11.902029499615997,9.922518077011679,P42) p(11.869880045488584,8.923035004318946,P43) p(11.020377040947855,9.450618784657454,P44) p(11.828599881969561,10.690758772991238,P45) p(12.277386525203795,13.526496227567531,P46) p(11.93817749741233,14.467207254113285,P47) p(11.293102364699301,13.703088105579976,P48) p(10.9771469500682,10.449683927299583,P49) p(9.804681612305657,11.629262014309582,P50) p(12.1364606385984,11.64219019696667,P51) p(10.964345119154483,12.758673644921,P52) p(10.784834233397518,11.43101762131337,P53) p(11.158566477167732,11.43308972105259,P54) p(10.466442603345545,12.3789768872699,P55) p(11.466427233796571,12.384521145028023,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P13,P50) s(P21,P50) s(P53,P50) s(P45,P51) s(P38,P51) s(P54,P51) s(P48,P52) s(P25,P52) s(P21,P53) s(P49,P53) s(P49,P54) s(P45,P54) s(P50,P55) s(P53,P55) s(P56,P55) s(P54,P56) s(P51,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P50,P53) abstand(P50,P53,A0) print(abs(P50,P53):,7.51,15.628) print(A0,8.36,15.628) color(red) s(P55,P56) abstand(P55,P56,A1) print(abs(P55,P56):,7.51,15.431) print(A1,8.36,15.431) print(min=0.9999999999661818,7.51,15.235) print(max=1.0000000000000022,7.51,15.038) \geooff \geoprint() \quoteoff dieser 2-3-4er sieht sehr gut aus, einfach symetrisch mit viereinhalb verbindungen über die symetrieachse, ich hoffe ich hab den richtigen ausgewählt haribo grus haribo \quoteoff Daraus kann man auch einen 4/2 machen. Die 2er Knoten liegen knapp unter den Kanten. \geo ebene(572.77,520.97) x(7.5,15.02) y(8.45,15.29) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-190.06686671111262,115.1971958594123]; #P[2]=[-157.57724610878506,46.30106985717008]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #Q(22,12,14,ab(4,5,[1,3]),D); #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(50,13,21); N(51,45,38); N(52,48,25); #N(49,19,44); # #//A(51,39); A(21,49); A(45,49); #N(53,21,49); N(54,49,45); A(50,53); A(51,54); #R(50,53); N(55,50,53); N(56,54,51); R(14,52); R(39,52); A(14,52); A(39,52); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.504784061132513,11.512319765117901,P1) p(7.93131089654304,10.607844857409189,P2) p(8.501345725999105,11.429465386124846,P3) p(8.927872561409632,10.524990478416134,P4) p(8.357837731953566,9.703369949700479,P5) p(9.497907390865699,11.34661100713179,P6) p(8.50383819597229,11.468836024943615,P7) p(8.041969152194895,12.355784155557888,P8) p(9.041023287034673,12.312300415383604,P9) p(8.579154243257276,13.199248545997877,P10) p(9.578208378097052,13.15576480582359,P11) p(9.116339334319658,14.042712936437864,P12) p(9.106503578354468,12.26683003299013,P13) p(10.105727429193417,12.30622160460873,P14) p(9.174138800735673,10.280996615554118,P15) p(9.266227632877177,9.285245819925606,P16) p(10.082528701659282,9.862872485779246,P17) p(10.174617533800786,8.867121690150734,P18) p(10.990918602582893,9.444748356004373,P19) p(11.083007434724397,8.448997560375863,P20) p(10.130758183499855,10.572337234966984,P21) p(9.643858385416024,13.193169735223005,P22) p(11.115310373144869,14.106859533682435,P23) p(10.115824853732263,14.07478623506015,P24) p(10.64334390482863,13.225243033845292,P25) p(14.695975796101173,11.471262449672514,P26) p(14.25914910423884,10.571716763630604,P27) p(13.698533034193012,11.399792618855457,P28) p(13.26170634233068,10.500246932813548,P29) p(13.822322412376508,9.672171077588695,P30) p(12.70109027228485,11.3283227880384,P31) p(13.696490276688419,11.439189151054912,P32) p(14.168456745008786,12.320805650889845,P33) p(13.168971225596032,12.288732352272241,P34) p(13.640937693916399,13.170348852107175,P35) p(12.641452174503645,13.138275553489573,P36) p(13.113418642824016,14.019892053324503,P37) p(13.102976003742118,12.244012614808938,P38) p(12.104267083437318,12.294811163052097,P39) p(13.012670136386932,10.259080944591199,P40) p(12.909217419825804,9.264446571851083,P41) p(12.099565143836227,9.851356438853589,P42) p(11.9961124272751,8.856722066113473,P43) p(11.186460151285523,9.443631933115977,P44) p(12.059439763459775,10.561325640374523,P45) p(12.576233551757685,13.176427662887031,P46) p(12.114364507984448,14.063375793503468,P47) p(11.577179416918119,13.219911403065998,P48) p(11.094371319144019,10.43938272874449,P49) p(9.739354370988625,11.492556260825324,P50) p(12.461325494917045,11.47701546714506,P51) p(11.105212948601874,12.338294903228856,P52) p(10.731989330681397,11.371412392670416,P53) p(11.467371977220104,11.367213806621711,P54) p(10.340585518170167,12.291631418528759,P55) p(11.869257708677374,12.282903633392248,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P52,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P52,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P13,P50) s(P21,P50) s(P53,P50) s(P45,P51) s(P38,P51) s(P54,P51) s(P48,P52) s(P25,P52) s(P21,P53) s(P49,P53) s(P49,P54) s(P45,P54) s(P50,P55) s(P53,P55) s(P54,P56) s(P51,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P50,P53) abstand(P50,P53,A0) print(abs(P50,P53):,7.5,15.288) print(A0,8.36,15.288) color(red) s(P14,P52) abstand(P14,P52,A1) print(abs(P14,P52):,7.5,15.091) print(A1,8.36,15.091) color(red) s(P39,P52) abstand(P39,P52,A2) print(abs(P39,P52):,7.5,14.895) print(A2,8.36,14.895) print(min=0.9999999999957766,7.5,14.698) print(max=1.0000000000000053,7.5,14.501) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1161, vom Themenstarter, eingetragen 2018-04-22

Fast ein 4/6 mit 97 Kanten. \geo ebene(488.31,517.59) x(8.62,15.03) y(9.12,15.91) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-105.3866088864857,175.8765082773407]; #P[2]=[-93.1459270831925,100.69394823852227]; D=ab(1,2); #A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #N(22,13,21); #Q(26,12,14,ab(4,5,[2,2]),D); # #A(20,27,ab(20,27,[1,26],"gespiegelt")); #N(51,41,14); #R(26,49); A(26,49); R(22,51); A(22,51); A(48,51); #N(52,19,46); R(21,52); R(22,52); A(21,52); A(22,52); A(47,52); A(48,52); # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.616474555576083,12.308923561059169,P1) p(8.777171392782359,11.32191974824389,P2) p(9.551593349709353,11.954589197979976,P3) p(9.712290186915629,10.967585385164696,P4) p(8.937868229988634,10.33491593542861,P5) p(10.486712143842624,11.600254834900781,P6) p(9.592907684904343,12.093103395295586,P7) p(9.291596866440445,13.046629373272388,P8) p(10.268029995768705,12.830809207508805,P9) p(9.966719177304807,13.784335185485606,P10) p(10.943152306633067,13.568515019722025,P11) p(10.641841488169167,14.522040997698825,P12) p(10.45505930139944,12.599753758144457,P13) p(11.449386435274052,12.70611893496798,P14) p(9.745757858594198,10.924249752540407,P15) p(9.852191101219486,9.929929902158113,P16) p(10.66008072982505,10.519263719269912,P17) p(10.766513972450337,9.524943868887618,P18) p(11.574403601055902,10.114277685999417,P19) p(11.680836843681188,9.119957835617123,P20) p(10.699341646423784,10.623121939828629,P21) p(10.667688803980596,11.622620863072303,P22) p(11.14807561681015,13.659644912944781,P26) p(11.641815470010899,14.529254570987574,P27) p(14.69887374080855,12.352800534911772,P28) p(14.552432905705423,11.363581104343256,P29) p(13.768964166467475,11.98501230297823,P30) p(13.622523331364349,10.995792872409714,P31) p(14.405992070602295,10.374361673774741,P32) p(12.8390545921264,11.617224071044689,P33) p(13.72565581827602,12.122916052483166,P34) p(14.013178977823276,13.080689738028955,P35) p(13.039961055290746,12.850805255600347,P36) p(13.327484214838,13.808578941146136,P37) p(12.354266292305466,13.57869445871753,P38) p(12.641789451852727,14.53646814426332,P39) p(12.85628459814079,12.61707562347272,P40) p(11.860526439093416,12.70908480068116,P41) p(13.58968433596571,10.951978919338346,P42) p(13.497606994961927,9.956227061055534,P43) p(12.681299260325341,10.533844306619141,P44) p(12.589221919321558,9.538092448336329,P45) p(11.772914184684971,10.115709693899934,P46) p(12.640544090875515,10.637125310259265,P47) p(12.65777409688991,11.636976862687295,P48) p(12.148049598640675,13.666858486226946,P49) p(11.662015937848881,11.72898603989445,P51) p(11.666480942059685,11.110029544282227,P52) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P27,P12) s(P26,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P45,P20) s(P46,P20) s(P6,P21) s(P15,P21) s(P52,P21) s(P13,P22) s(P21,P22) s(P51,P22) s(P52,P22) s(P27,P26) s(P14,P26) s(P49,P26) s(P28,P29) s(P28,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P29,P32) s(P31,P32) s(P30,P33) s(P31,P33) s(P28,P34) s(P28,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P49,P39) s(P27,P39) s(P33,P40) s(P34,P40) s(P38,P41) s(P40,P41) s(P32,P42) s(P32,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P33,P47) s(P42,P47) s(P52,P47) s(P40,P48) s(P47,P48) s(P51,P48) s(P52,P48) s(P41,P49) s(P27,P49) s(P41,P51) s(P14,P51) s(P19,P52) s(P46,P52) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P26,P49) abstand(P26,P49,A0) print(abs(P26,P49):,8.62,15.915) print(A0,9.47,15.915) color(red) s(P22,P51) abstand(P22,P51,A1) print(abs(P22,P51):,8.62,15.718) print(A1,9.47,15.718) color(red) s(P21,P52) abstand(P21,P52,A2) print(abs(P21,P52):,8.62,15.521) print(A2,9.47,15.521) color(red) s(P22,P52) abstand(P22,P52,A3) print(abs(P22,P52):,8.62,15.324) print(A3,9.47,15.324) print(min=0.9999999999887468,8.62,15.127) print(max=1.122646692057456,8.62,14.93) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1162, vom Themenstarter, eingetragen 2018-04-24

Fast 108er. 2 Kanten falsch. \geo ebene(546.32,486) x(7.53,14.7) y(9.09,15.47) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-187.98588305500536,40.13927548390267]; #P[2]=[-134.83595866953237,-14.42570561953535]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #N(24,17,18); N(25,24,18); # #A(25,21,ab(21,25,[1,25])); # #N(49,24,47); N(50,48,23); N(51,13,19); N(52,38,44); #R(14,51); A(14,51); A(39,52); # #N(53,19,49); N(54,44,50); R(51,53); A(51,53); A(52,54); #R(50,53); A(50,53); A(49,54); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.532103412880099,10.526952233680248,P1) p(8.229860685207878,9.810617961909243,P2) p(8.501345725999105,10.77306062130594,P3) p(9.199102998326886,10.056726349534934,P4) p(8.92761795753566,9.094283690138237,P5) p(9.47058803911811,11.019169008931632,P6) p(8.483811282630139,10.83395733242592,P7) p(7.742083133150018,11.50465797523819,P8) p(8.69379100290006,11.811663073983862,P9) p(7.952062853419937,12.482363716796133,P10) p(8.903770723169979,12.789368815541803,P11) p(8.162042573689858,13.460069458354075,P12) p(8.817655925095789,11.776585442921771,P13) p(9.718844792943075,12.210012050859177,P14) p(9.427765234167426,9.960224047020759,P15) p(9.927617943073969,9.094113621382785,P16) p(10.427765219705734,9.960053978265305,P17) p(10.927617928612277,9.093943552627334,P18) p(10.296540926191666,10.455429859736846,P19) p(8.977116643462955,12.880712693671448,P20) p(9.98059199560199,14.292462394450393,P21) p(9.071317284645923,13.876265926402233,P22) p(9.886391354419022,13.296909161719608,P23) p(11.427765205244043,9.959883909509854,P24) p(11.927617914150586,9.09377348387188,P25) p(14.376106496872476,12.859283644642026,P26) p(13.678349224544696,13.57561791641303,P27) p(13.40686418375347,12.613175257016334,P28) p(12.70910691142569,13.329509528787339,P29) p(12.980591952216914,14.291952188184034,P30) p(12.437621870634462,12.36706686939064,P31) p(13.424398627122436,12.552278545896353,P32) p(14.166126776602557,11.881577903084082,P33) p(13.214418906852517,11.57457280433841,P34) p(13.956147056332638,10.90387216152614,P35) p(13.004439186582598,10.596867062780468,P36) p(13.746167336062719,9.926166419968197,P37) p(13.090553984656786,11.609650435400502,P38) p(12.1893651168095,11.176223827463096,P39) p(12.48044467558515,13.426011831301516,P40) p(11.980591966678606,14.292122256939486,P41) p(11.48044469004684,13.426181900056966,P42) p(10.980591981140298,14.29229232569494,P43) p(11.611668983560909,12.930806018585425,P44) p(12.931093266289622,10.505523184650823,P45) p(12.836892625106652,9.509969951920038,P46) p(12.021818555333555,10.089326716602665,P47) p(10.480444704508528,13.426351968812417,P48) p(11.521965846427012,10.955437142240639,P49) p(10.38624406332556,12.430798736081632,P50) p(9.643608812169344,11.212846293726987,P51) p(12.264601097583231,12.173389584595284,P52) p(10.626016742259793,11.399593874421923,P53) p(11.28219316749278,11.98664200390035,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P51,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P52,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P42,P48) s(P43,P48) s(P24,P49) s(P47,P49) s(P54,P49) s(P48,P50) s(P23,P50) s(P53,P50) s(P13,P51) s(P19,P51) s(P53,P51) s(P38,P52) s(P44,P52) s(P54,P52) s(P19,P53) s(P49,P53) s(P44,P54) s(P50,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P14,P51) abstand(P14,P51,A0) print(abs(P14,P51):,7.53,15.474) print(A0,8.39,15.474) color(red) s(P51,P53) abstand(P51,P53,A1) print(abs(P51,P53):,7.53,15.277) print(A1,8.39,15.277) color(red) s(P50,P53) abstand(P50,P53,A2) print(abs(P50,P53):,7.53,15.08) print(A2,8.39,15.08) print(min=0.9999999999999973,7.53,14.883) print(max=1.0587135610135174,7.53,14.686) \geooff \geoprint() Genauer mit drittem Winkel. \geo ebene(555.57,493.71) x(7.52,14.82) y(8.53,15.01) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # # #P[1]=[-188.59515823565604,2.727312112499522]; #P[2]=[-137.38190172614722,-53.659335089575805]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); #N(19,16,17); N(20,19,17); N(21,13,18); N(22,13,21); N(23,21,18); #M(24,20,19,orange_angle); N(25,24,20); N(26,24,25); N(27,26,25); #A(27,12,ab(12,27,[1,27])); #N(53,45,50); N(54,19,24); # #R(23,54); A(49,53); #R(26,48); A(22,52); #R(23,53); A(49,54); #R(11,22); A(38,48); # #A(11,22); A(26,48); A(54,23); A(23,53); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.524104790246802,10.03580441331586,P1) p(8.19643730214149,9.295555135403763,P2) p(8.501345725999107,10.247936809450815,P3) p(9.173678237893796,9.507687531538718,P4) p(8.868769814036177,8.555305857491668,P5) p(9.478586661751413,10.46006920558577,P6) p(8.48697869797696,10.305755960472853,P7) p(7.771756846483012,11.004653451629867,P8) p(8.73463075421317,11.274604998786861,P9) p(8.01940890271922,11.973502489943874,P10) p(8.98228281044938,12.243454037100868,P11) p(8.267060958955431,12.94235152825788,P12) p(8.849772977477695,11.237625216732305,P13) p(9.376798239699795,9.416646161156686,P14) p(9.868726611145295,8.546010486854868,P15) p(10.376755036808913,9.407350790519887,P16) p(10.86868340825441,8.536715116218069,P17) p(10.27527154813633,9.855674308348993,P18) p(11.37671183391803,9.398055419883088,P19) p(11.868640205363528,8.527419745581271,P20) p(9.646457863862608,10.633230319495526,P21) p(9.771536755594887,11.62537711853437,P22) p(10.634247964517664,10.789020938750589,P23) p(12.040146046094723,9.51260284866165,P24) p(12.807586720375918,8.871482882150838,P25) p(12.979092561107112,9.856665985231219,P26) p(13.746533235388307,9.215546018720406,P27) p(14.48948940409694,12.122093133662426,P28) p(13.817156892202249,12.862342411574524,P29) p(13.512248468344632,11.909960737527474,P30) p(12.839915956449946,12.65021001543957,P31) p(13.144824380307563,13.60259168948662,P32) p(12.535007532592324,11.697828341392519,P33) p(13.52661549636678,11.852141586505434,P34) p(14.241837347860729,11.15324409534842,P35) p(13.27896344013057,10.883292548191427,P36) p(13.994185291624518,10.184395057034413,P37) p(13.031311383894359,9.91444350987742,P38) p(13.163821216866046,10.920272330245982,P39) p(12.636795954643944,12.741251385821602,P40) p(12.144867583198446,13.611887060123419,P41) p(11.636839157534828,12.750546756458402,P42) p(11.144910786089328,13.62118243076022,P43) p(11.738322646207411,12.302223238629296,P44) p(10.63688236042571,12.759842127095201,P45) p(10.144953988980213,13.630477801397019,P46) p(12.36713633048113,11.524667227482762,P47) p(12.242057438748855,10.532520428443918,P48) p(11.379346229826076,11.368876608227701,P49) p(9.973448148249016,12.645294698316636,P50) p(9.206007473967823,13.28641466482745,P51) p(9.034501633236626,12.30123156174707,P52) p(10.465376519694518,11.774659024014822,P53) p(11.548217674649225,10.383238522963467,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P22,P11) s(P10,P12) s(P11,P12) s(P51,P12) s(P52,P12) s(P7,P13) s(P6,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P13,P21) s(P18,P21) s(P13,P22) s(P21,P22) s(P52,P22) s(P21,P23) s(P18,P23) s(P53,P23) s(P20,P24) s(P24,P25) s(P20,P25) s(P24,P26) s(P25,P26) s(P48,P26) s(P26,P27) s(P25,P27) s(P37,P27) s(P38,P27) s(P28,P29) s(P28,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P29,P32) s(P31,P32) s(P30,P33) s(P31,P33) s(P28,P34) s(P28,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P48,P38) s(P33,P39) s(P34,P39) s(P32,P40) s(P32,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P33,P44) s(P40,P44) s(P42,P45) s(P43,P45) s(P43,P46) s(P45,P46) s(P39,P47) s(P44,P47) s(P39,P48) s(P47,P48) s(P44,P49) s(P47,P49) s(P53,P49) s(P54,P49) s(P46,P50) s(P46,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P45,P53) s(P50,P53) s(P19,P54) s(P24,P54) s(P23,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P19,P20,MA12) m(P20,P24,MB12) b(P20,MA12,MB12) pen(2) color(red) s(P23,P54) abstand(P23,P54,A0) print(abs(P23,P54):,7.52,15.009) print(A0,8.38,15.009) color(red) s(P26,P48) abstand(P26,P48,A1) print(abs(P26,P48):,7.52,14.812) print(A1,8.38,14.812) color(red) s(P23,P53) abstand(P23,P53,A2) print(abs(P23,P53):,7.52,14.615) print(A2,8.38,14.615) color(red) s(P11,P22) abstand(P11,P22,A3) print(abs(P11,P22):,7.52,14.418) print(A3,8.38,14.418) print(min=0.999999999999997,7.52,14.221) print(max=1.0024673895905059,7.52,14.024) \geooff \geoprint() Fast 108er. 2 Kanten falsch. \geo ebene(480.94,538.64) x(7.3,13.61) y(8.93,16) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-188.86582829005138,34.02891104239396]; #P[2]=[-138.64445449217197,-23.242942767778537]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #N(24,17,18); N(25,24,18); # #A(25,21,ab(21,25,[1,25])); # #N(49,24,47); N(50,48,23); N(51,13,19); N(52,38,44); #R(51,53); A(51,53); A(52,54); # #N(53,50,14); N(54,49,39); #R(51,54); A(51,54); A(52,53); #R(19,49); A(19,49); A(50,44); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.520551407978832,10.446734786996519,P1) p(8.179862389112417,9.694864432376342,P2) p(8.501345725999112,10.641779668342158,P3) p(9.160656707132697,9.889909313721981,P4) p(8.839173370246002,8.942994077756167,P5) p(9.482140044019392,10.836824549687796,P6) p(8.346891525267095,11.009906173485588,P7) p(7.446000739238926,11.443952013978901,P8) p(8.272340856527189,12.007123400467972,P9) p(7.371450070499019,12.441169240961283,P10) p(8.197790187787282,13.004340627450352,P11) p(7.296899401759113,13.438386467943666,P12) p(9.037914107277313,11.732739343139508,P13) p(9.158124046818156,12.725487836180713,P14) p(9.342036697394537,9.807360015429039,P15) p(9.839167894010934,8.939684630650405,P16) p(10.34203122115947,9.804050568323278,P17) p(10.839162417775865,8.936375183544644,P18) p(10.258767814021107,10.206864783621612,P19) p(8.257233260789988,13.15953367667403,P20) p(8.740220463101396,14.822880712744194,P21) p(8.018559932430254,14.13063359034393,P22) p(8.978893791461129,13.851780799074293,P23) p(11.342025744924403,9.800741121217518,P24) p(11.839156941540798,8.933065736438884,P25) p(13.058825996663359,13.309211662186557,P26) p(12.39951501552978,14.061082016806733,P27) p(12.078031678643082,13.114166780840918,P28) p(11.418720697509498,13.866037135461097,P29) p(11.740204034396195,14.81295237142691,P30) p(11.097237360622804,12.91912189949528,P31) p(12.2324858793751,12.746040275697489,P32) p(13.133376665403269,12.311994435204175,P33) p(12.307036548115008,11.748823048715106,P34) p(13.207927334143175,11.314777208221793,P35) p(12.381587216854914,10.751605821732724,P36) p(13.282478002883082,10.31755998123941,P37) p(11.541463297364881,12.02320710604357,P38) p(11.421253357824042,11.030458613002363,P39) p(11.237340707247657,13.948586433754038,P40) p(10.74020951063126,14.81626181853267,P41) p(10.237346183482726,13.9518958808598,P42) p(9.74021498686633,14.819571265638434,P43) p(10.32060959062109,13.549081665561467,P44) p(12.322144143852206,10.596412772509048,P45) p(12.56081747221194,9.625312858839147,P46) p(11.600483613181064,9.904165650108784,P47) p(9.237351659717817,13.955205327965572,P48) p(11.103352416564668,10.771841034887418,P49) p(9.476024988077546,12.984105414295671,P50) p(9.814541877279028,11.102779577073324,P51) p(10.764835527363164,12.653166872109752,P52) p(9.934751816819873,12.095528070114531,P53) p(10.644625587822327,11.660418379068549,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P49,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P42,P48) s(P43,P48) s(P24,P49) s(P47,P49) s(P48,P50) s(P23,P50) s(P44,P50) s(P13,P51) s(P19,P51) s(P53,P51) s(P54,P51) s(P38,P52) s(P44,P52) s(P54,P52) s(P53,P52) s(P50,P53) s(P14,P53) s(P49,P54) s(P39,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P51,P53) abstand(P51,P53,A0) print(abs(P51,P53):,7.3,16.004) print(A0,8.15,16.004) color(red) s(P51,P54) abstand(P51,P54,A1) print(abs(P51,P54):,7.3,15.807) print(A1,8.15,15.807) color(red) s(P19,P49) abstand(P19,P49,A2) print(abs(P19,P49):,7.3,15.611) print(A2,8.15,15.611) print(min=0.9999999999999775,7.3,15.414) print(max=1.0161305601880237,7.3,15.217) \geooff \geoprint() Gleicher Graph, andere Kanten eingestellt und noch genauer. \geo ebene(486.61,537.41) x(7.89,14.27) y(8.42,15.48) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-138.59515823565644,-7.272687887500505]; #P[2]=[-87.38190172614736,-63.65933508957621]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #N(24,17,18); N(25,24,18); # #A(25,21,ab(21,25,[1,25])); # #N(49,19,24); N(50,44,48); #N(51,50,14); N(53,49,39); # #R(23,50); A(23,50); A(47,49); # #N(55,51,53); N(56,53,51); #R(13,56); A(13,56); A(55,38); #R(19,56); A(19,56); A(55,44); # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.180509555065711,9.90452346035208,P1) p(8.852842066960399,9.164274182439982,P2) p(9.157750490818017,10.116655856487034,P3) p(9.830083002712705,9.376406578574937,P4) p(9.525174578855086,8.424024904527887,P5) p(10.134991426570323,10.328788252621987,P6) p(8.993347371474414,10.487013532555832,P7) p(8.08247726328938,10.899706694620564,P8) p(8.895315079698083,11.482196766824316,P9) p(7.984444971513049,11.894889928889047,P10) p(8.797282787921752,12.4773800010928,P11) p(7.886412679736719,12.890073163157531,P12) p(9.676363621326242,11.217416710559833,P13) p(9.76190698093343,12.213751159240154,P14) p(10.025031355214946,9.290132982730098,P15) p(10.52517456518105,8.424190277047556,P16) p(11.02503134154091,9.290298355249769,P17) p(11.525174551507014,8.424355649567227,P18) p(10.928076871025274,9.719677853930834,P19) p(8.851036872748399,12.626444321304884,P20) p(9.307655421177722,14.297222433811239,P21) p(8.597034050457221,13.593647798484385,P22) p(9.5616582434689,13.330018956631738,P23) p(12.025031327866875,9.290463727769438,P24) p(12.52517453783298,8.424521022086896,P25) p(13.652320403944993,12.817219995546056,P26) p(12.979987892050305,13.557469273458151,P27) p(12.675079468192685,12.605087599411101,P28) p(12.002746956298001,13.345336877323199,P29) p(12.30765538015562,14.297718551370249,P30) p(11.697838532440377,12.392955203276149,P31) p(12.839482587536288,12.234729923342302,P32) p(13.750352695721322,11.822036761277571,P33) p(12.93751487931262,11.23954668907382,P34) p(13.848384987497653,10.826853527009089,P35) p(13.03554717108895,10.244363454805335,P36) p(13.946417279273984,9.831670292740604,P37) p(12.15646633768446,11.504326745338302,P38) p(12.070922978077272,10.507992296657982,P39) p(11.807798603795757,13.431610473168035,P40) p(11.30765539382965,14.297553178850578,P41) p(10.807798617469796,13.431445100648368,P42) p(10.307655407503692,14.29738780633091,P43) p(10.904753087985432,13.0020656019673,P44) p(12.981793086262304,10.095299134593251,P45) p(13.23579590855348,9.12809565741375,P46) p(12.2711717155418,9.391724499266397,P47) p(9.807798631143747,13.43127972812865,P48) p(11.771028505575641,10.257667204948925,P49) p(10.061801453435077,12.46407625094919,P50) p(10.540320176301357,11.585998901357241,P51) p(11.292509782709304,11.135744554540844,P53) p(11.378053142316348,12.132079003221175,P55) p(10.454776816694313,10.58966445267691,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P56,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P56,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P50,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P49,P47) s(P42,P48) s(P43,P48) s(P19,P49) s(P24,P49) s(P44,P50) s(P48,P50) s(P50,P51) s(P14,P51) s(P49,P53) s(P39,P53) s(P51,P55) s(P53,P55) s(P38,P55) s(P44,P55) s(P53,P56) s(P51,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P23,P50) abstand(P23,P50,A0) print(abs(P23,P50):,7.89,15.479) print(A0,8.74,15.479) color(red) s(P13,P56) abstand(P13,P56,A1) print(abs(P13,P56):,7.89,15.282) print(A1,8.74,15.282) color(red) s(P19,P56) abstand(P19,P56,A2) print(abs(P19,P56):,7.89,15.085) print(A2,8.74,15.085) print(min=0.9903987194193326,7.89,14.888) print(max=1.000000000000121,7.89,14.692) \geooff \geoprint() Fast 4/6 108er. 3 Knoten treffen sich nicht. \geo ebene(559.55,498.16) x(7.52,14.86) y(8.54,15.08) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-189.11374108654323,5.3350355762666695]; #P[2]=[-139.8995479172578,-52.804579280527456]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #N(24,17,18); N(25,24,18); # #A(25,21,ab(25,21,[1,25],"gespiegelt")); # #N(49,48,44); N(50,47,23); N(51,13,19); N(52,44,38); #//R(19,49); A(19,49); A(49,44); #R(14,51); A(14,51); A(39,52); #N(53,50,51); N(54,52,50); #R(53,54); A(53,54); # #N(55,19,24); N(56,54,53); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.517296785161296,10.070038855454795,P1) p(8.163385403022032,9.306776451120086,P2) p(8.501345725999112,10.247936809450815,P3) p(9.14743434385985,9.484674405116104,P4) p(8.809474020882769,8.543514046785376,P5) p(9.48539466683693,10.425834763446835,P6) p(8.49131597914803,10.29650432687468,P7) p(7.808181530825024,11.026796956930895,P8) p(8.78220072481176,11.253262428350778,P9) p(8.099066276488754,11.983555058406992,P10) p(9.073085470475489,12.210020529826876,P11) p(8.389951022152484,12.94031315988309,P12) p(8.876717961592577,11.219253107382036,P13) p(9.82154068459847,11.546835191891752,P14) p(9.309201460272513,9.409696756333984,P15) p(9.809473971365573,8.543828744080013,P16) p(10.30920141075532,9.410011453628622,P17) p(10.80947392184838,8.544143441374649,P18) p(10.241500435349952,9.771385325505802,P19) p(9.138406236275468,12.277127821947971,P20) p(10.287076936413829,13.573490279998826,P21) p(9.338513979283157,13.256901719940956,P22) p(10.08696919340614,12.593716382005839,P23) p(11.309201361238124,9.410326150923257,P24) p(11.809473872331184,8.544458138669286,P25) p(14.534902150652524,12.194419970083466,P26) p(14.420607479537832,11.200973077615235,P27) p(13.617404568906984,11.796678612551865,P28) p(13.503109897792289,10.803231720083634,P29) p(14.306312808423137,10.207526185147005,P30) p(12.69990698716144,11.398937255020263,P31) p(13.598813958187506,11.842654571092075,P32) p(13.762220282721103,12.829213425445133,P33) p(12.826132090256083,12.477448026453741,P34) p(12.989538414789678,13.464006880806801,P35) p(12.05345022232466,13.11224148181541,P36) p(12.216856546858255,14.098800336168466,P37) p(12.766345989103408,12.396727743560294,P38) p(11.798471246466729,12.145294884597941,P39) p(13.410086593583856,10.651123493338632,P40) p(13.474033163059152,9.653170169654432,P41) p(12.577806948219871,10.09676747784606,P42) p(12.641753517695168,9.09881415416186,P43) p(12.433716859050648,10.435016710734397,P44) p(11.961877571000322,13.131853738951001,P45) p(11.251966741636037,13.836145308083644,P46) p(10.996987765778101,12.86919871086618,P47) p(11.745527302855889,9.542411462353487,P48) p(11.435405603005455,10.493108328490047,P49) p(10.796880022770418,11.889424812873193,P50) p(9.6328237301056,10.564803669441005,P51) p(12.500155860992614,11.432807199274428,P52) p(10.569246292112448,10.915677985064889,P53) p(11.526352647177932,11.205414805461011,P54) p(11.039981721330983,10.373404956363535,P55) p(11.298718916519961,10.231667977652707,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P51,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P21,P22) s(P21,P23) s(P22,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P43,P25) s(P48,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P52,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P21,P46) s(P21,P47) s(P46,P47) s(P42,P48) s(P43,P48) s(P48,P49) s(P44,P49) s(P47,P50) s(P23,P50) s(P13,P51) s(P19,P51) s(P44,P52) s(P38,P52) s(P50,P53) s(P51,P53) s(P54,P53) s(P52,P54) s(P50,P54) s(P19,P55) s(P24,P55) s(P54,P56) s(P53,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P14,P51) abstand(P14,P51,A0) print(abs(P14,P51):,7.52,15.083) print(A0,8.37,15.083) color(red) s(P53,P54) abstand(P53,P54,A1) print(abs(P53,P54):,7.52,14.886) print(A1,8.37,14.886) print(min=0.999999999999994,7.52,14.69) print(max=1.000000000000006,7.52,14.493) \geooff \geoprint() @ Stefan: Ist bei dieser Art Graphen eigentlich noch durch einen dritten einstellbaren Winkel etwas rauszuholen?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1163, vom Themenstarter, eingetragen 2018-04-24

Diesen fast 108er hatten wir schon mal. Aber es ist erstaunlich, dass man ihn, trotz gespiegelter Hülle, bis auf nur "eine Kante" zurechtziehen kann. Wie kann das sein? Man vergleiche hier (der 3.) wo zusätzlich zwei Kanten sehr falsch waren. Es macht wohl viel aus, wo die einstellbaren Winkel sitzen. EDIT: Problem in #1171 gelöst. Doch zwei Kanten falsch. Parallele Kante P54,P39 wurde nicht gemessen. \geo ebene(503.27,581.87) x(7.79,14.4) y(8.46,16.1) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-11.957382724521812,-117.24516390610442]; #P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #N(24,17,18); N(25,24,18); # #A(25,21,ab(21,25,[1,25])); # #N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50); # #N(51,13,19); N(53,14,51); N(54,51,49); #R(53,50); A(53,50); A(54,39); # #N(55,53,54); #R(44,55); R(38,55); A(44,55); A(38,55); # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.843022340097214,8.460794315201198,P1) p(10.843013021899832,8.465111294229926,P2) p(10.33927906749204,9.328970138704351,P3) p(11.339269749294658,9.333287117733079,P4) p(11.84300370370245,8.469428273258655,P5) p(10.835535794886866,10.197145962207504,P6) p(10.133076730576555,9.417804477406207,P7) p(9.15925442318748,9.190493866938024,P8) p(9.449308813666823,10.147504029143033,P9) p(8.475486506277747,9.92019341867485,P10) p(8.76554089675709,10.87720358087986,P11) p(7.791718589368015,10.649892970411676,P12) p(9.851928310766327,10.377468776022246,P13) p(9.643711340247506,11.355551437757931,P14) p(11.610361660292266,9.44199070294527,P15) p(12.568946452872284,9.157183407683505,P16) p(12.336304409462102,10.12974583737012,P17) p(13.29488920204212,9.844938542108354,P18) p(11.809958518388278,10.421868804669256,P19) p(8.669889032858432,11.12824082728975,P20) p(7.841366241053923,12.649276653120445,P21) p(7.81654241521097,11.649584811766061,P22) p(8.694712858701386,12.127932668644133,P23) p(13.062247158631935,10.817500971794969,P24) p(14.020831951211953,10.532693676533203,P25) p(12.019175852168663,14.72117601445245,P26) p(11.019185170366047,14.716859035423722,P27) p(11.52291912477384,13.853000190949297,P28) p(10.52292844297122,13.848683211920571,P29) p(10.01919448856343,14.712542056394996,P30) p(11.026662397379011,12.984824367446143,P31) p(11.729121461689322,13.76416585224744,P32) p(12.702943769078399,13.991476462715625,P33) p(12.412889378599056,13.034466300510614,P34) p(13.38671168598813,13.261776910978798,P35) p(13.096657295508788,12.304766748773787,P36) p(14.070479602897862,12.53207735924197,P37) p(12.01026988149955,12.8045015536314,P38) p(12.218486852018371,11.826418891895717,P39) p(10.251836531973613,13.739979626708378,P40) p(9.293251739393593,14.02478692197014,P41) p(9.525893782803779,13.052224492283528,P42) p(8.567308990223756,13.337031787545289,P43) p(10.0522396738776,12.76010152498439,P44) p(13.192309159407447,12.053729502363899,P45) p(14.045655777054908,11.532385517887587,P46) p(13.16748533356449,11.054037661009513,P47) p(8.79995103363394,12.364469357858674,P48) p(12.208900540984473,11.338844956271279,P49) p(9.653297651281404,11.843125373382367,P50) p(10.82635103426774,10.602191618483998,P51) p(10.61813406374892,11.580274280219683,P53) p(11.225293056863935,11.519167770086021,P54) p(11.017076086345115,12.497250431821707,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P50,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P55,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P55,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P49,P47) s(P42,P48) s(P43,P48) s(P19,P49) s(P24,P49) s(P44,P50) s(P48,P50) s(P13,P51) s(P19,P51) s(P14,P53) s(P51,P53) s(P50,P53) s(P51,P54) s(P49,P54) s(P39,P54) s(P53,P55) s(P54,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.79,16.1) print(A0,8.65,16.1) color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.79,15.903) print(A1,8.65,15.903) color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.79,15.706) print(A2,8.65,15.706) color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.79,15.509) print(A3,8.65,15.509) print(min=0.9999999999999951,7.79,15.312) print(max=1.0396331884787964,7.79,15.115) \geooff \geoprint() Dasselbe hier und hier (der 1.). Gleicher Graph, aber beim alten zusätzlich zwei sehr falsche Kanten.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1164, eingetragen 2018-04-24

diesen 108er müssen wir noch etwas weiter versuchen http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-108-versuch.png ich vermute die beiden winkel hängen zusammen, jedenfals wenn ich die roten dreiecke vorgebe und dann den blauen winkel wähle dann generiert er alle blauen linien, dabei auch die mit A bezeichnete, damit die 1,0014 eins wird müsste, abhängig vom blauen winkel, der magenta winkel derart gewählt werden dass B parallel zu A liegt, (darum meine ich: magenta hängt zwangsweise ab von blau) das parallelisieren sollte für einen grösseren blau-winkel bereich möglich sein, spiegelt man alles(gelb) dann ergibt sich bei mir innen eine doppelte überschneidung, die es eben zu minimieren gilt ob die überschneidung null werden kann kann oder nicht??? ich kanns nicht entscheiden haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1165, vom Themenstarter, eingetragen 2018-04-24

Das ist das genaueste, was ich erreicht habe. Eine Abweichung von weniger als 0,004 bei zwei Kanten. Die gemessenen Kanten haben natürlich je ein symmetrisches Pendant, was nur gezeichnet, aber nicht extra gemessen wurde, da es dieselben Abstände wären. Es kommt darauf an in welcher Reihenfolge die drei Kanten gemessen werden. \geo ebene(479.86,539.1) x(7.97,14.27) y(8.4,15.48) form(.) \geo ebene(366.74,427.41) x(7.69,14.1) y(8.44,15.91) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-120.28666469129485,-2.276358377462431]; #P[2]=[-82.55460323533744,-45.30554982011669]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); #N(24,17,18); N(25,24,18); #N(26,19,24); N(27,13,19); #A(25,21,ab(21,25,[1,28])); #N(53,27,52); N(54,52,27); #R(41,54); A(41,54); A(14,53); #R(51,53); A(51,53); A(26,54); #R(23,51); A(23,51); A(26,49); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.898171585258502,9.960224063638606,P1) p(8.557482566392084,9.208353709018425,P2) p(8.878965903278782,10.15526894498424,P3) p(9.538276884412364,9.403398590364061,P4) p(9.216793547525665,8.456483354398246,P5) p(9.859760221299062,10.350313826329874,P6) p(8.72691013355351,10.519860033327724,P7) p(7.82788189278369,10.957750684402079,P8) p(8.656620441078699,11.517386654091199,P9) p(7.7575922003088795,11.955277305165554,P10) p(8.586330748603888,12.514913274854674,P11) p(7.687302507834068,12.952803925929029,P12) p(9.4146691289205,11.245799124637589,P13) p(9.546940578715695,12.237012655401307,P14) p(9.720693898152037,9.320245148319824,P15) p(10.216783379193355,8.45197374674071,P16) p(10.720683729819728,9.315735540662287,P17) p(11.216773210861044,8.447464139083175,P18) p(10.636890542077904,9.720974121141829,P19) p(8.647912337945876,12.674903306475663,P20) p(9.129250330293967,14.338728338479422,P21) p(8.408276419064016,13.645766132204226,P22) p(9.368886249175825,13.36786551275086,P23) p(11.720673561487416,9.311225933004751,P24) p(12.216763042528735,8.442954531425638,P25) p(11.467033565706732,10.278524621384081,P26) p(10.191799449699339,10.616459419449543,P27) p(13.4478417875642,12.821458806266456,P28) p(12.788530806430618,13.573329160886635,P29) p(12.467047469543921,12.62641392492082,P30) p(11.807736488410338,13.378284279540999,P31) p(12.129219825297033,14.325199515506814,P32) p(11.486253151523638,12.431369043575186,P33) p(12.619103239269192,12.261822836577334,P34) p(13.518131480039012,11.823932185502981,P35) p(12.689392931744003,11.26429621581386,P36) p(13.588421172513822,10.826405564739506,P37) p(12.759682624218813,10.266769595050386,P38) p(13.658710864988635,9.828878943976033,P39) p(11.931344243902203,11.535883745267471,P40) p(11.799072794107005,10.544670214503753,P41) p(11.625319474670663,13.461437721585236,P42) p(11.129229993629348,14.32970912316435,P43) p(10.625329643002974,13.465947329242775,P44) p(10.129240161961649,14.334218730821883,P45) p(10.709122830744803,13.060708748763235,P46) p(12.698101034876824,10.106779563429397,P47) p(12.937736953758684,9.135916737700835,P48) p(11.977127123646875,9.4138173571542,P49) p(9.62533981133523,13.47045693690028,P50) p(9.878979807115954,12.50315824852097,P51) p(11.154213923123365,12.165223450455517,P52) p(10.32407089949454,11.60767295021326,P53) p(11.021942473328165,11.1740099196918,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P53,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P45,P21) s(P50,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P51,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P19,P26) s(P24,P26) s(P54,P26) s(P49,P26) s(P13,P27) s(P19,P27) s(P28,P29) s(P28,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P29,P32) s(P31,P32) s(P30,P33) s(P31,P33) s(P28,P34) s(P28,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P47,P39) s(P48,P39) s(P33,P40) s(P34,P40) s(P38,P41) s(P40,P41) s(P54,P41) s(P32,P42) s(P32,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P33,P46) s(P42,P46) s(P41,P47) s(P48,P47) s(P49,P47) s(P25,P48) s(P25,P49) s(P48,P49) s(P44,P50) s(P45,P50) s(P46,P51) s(P50,P51) s(P53,P51) s(P40,P52) s(P46,P52) s(P27,P53) s(P52,P53) s(P52,P54) s(P27,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P41,P54) abstand(P41,P54,A0) print(abs(P41,P54):,7.69,15.911) print(A0,8.82,15.911) color(red) s(P51,P53) abstand(P51,P53,A1) print(abs(P51,P53):,7.69,15.649) print(A1,8.82,15.649) color(red) s(P23,P51) abstand(P23,P51,A2) print(abs(P23,P51):,7.69,15.387) print(A2,8.82,15.387) print(min=0.9999999999999913,7.69,15.125) print(max=1.0039492470558278,7.69,14.863) \geooff \geoprint() Hier der Aufbau des Graphen. Die gemessenen Kanten erst 1, dann 2, dann 3 eingefügt. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_slash_108er_aufbau.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1166, vom Themenstarter, eingetragen 2018-04-25

Variationen \geo ebene(520.07,565.39) x(7.35,14.17) y(8.46,15.88) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-11.957382724521812,-117.24516390610442]; #P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); #N(24,17,18); N(25,24,18); #A(25,21,ab(21,25,[1,25])); #N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50); #N(51,13,19); N(53,14,51); N(54,51,49); #R(53,50); A(53,50); A(54,39); #N(55,53,54); #R(44,55); R(38,55); A(44,55); A(38,55); # # #//Ende der Eingabe, weiter mit fedgeo: p(9.843022340097214,8.460794315201198,P1) p(10.843013021899832,8.465111294229926,P2) p(10.33927906749204,9.328970138704351,P3) p(11.339269749294658,9.333287117733079,P4) p(11.84300370370245,8.469428273258655,P5) p(10.835535794886866,10.197145962207504,P6) p(9.964324190904389,9.453409981504503,P7) p(9.044042882287723,9.062152632677934,P8) p(9.165344733094898,10.054768298981239,P9) p(8.24506342447823,9.663510950154672,P10) p(8.366365275285407,10.656126616457977,P11) p(7.4460839666687395,10.264869267631408,P12) p(9.86770059126832,10.448730974950019,P13) p(9.206320680052748,11.19878204857133,P14) p(11.531890703587617,9.419801200671651,P15) p(12.510494301853672,9.21404649851219,P16) p(12.199381301738839,10.164419425925185,P17) p(13.177984900004894,9.958664723765724,P18) p(11.819106922766856,10.377666975945193,P19) p(8.286039371436082,10.807524699744759,P20) p(7.346132592012516,12.262370136893878,P21) p(7.396108279340627,11.263619702262645,P22) p(8.236063684107972,11.806275134375994,P23) p(12.86687189989006,10.90903765117872,P24) p(13.845475498156116,10.70328294901926,P25) p(11.348585750071416,14.504858770711937,P26) p(10.348595068268798,14.500541791683208,P27) p(10.852329022676592,13.636682947208786,P28) p(9.852338340873974,13.632365968180057,P29) p(9.34860438646618,14.49622481265448,P30) p(10.356072295281765,12.768507123705632,P31) p(11.227283899264242,13.512243104408634,P32) p(12.14756520788091,13.903500453235203,P33) p(12.026263357073733,12.910884786931899,P34) p(12.9465446656904,13.302142135758466,P35) p(12.825242814883223,12.309526469455163,P36) p(13.74552412349989,12.70078381828173,P37) p(11.32390749890031,12.516922110963119,P38) p(11.985287410115882,11.766871037341808,P39) p(9.659717386581013,13.545851885241486,P40) p(8.68111378831496,13.75160658740095,P41) p(8.992226788429795,12.801233659987956,P42) p(8.013623190163738,13.00698836214742,P43) p(9.372501167401774,12.587986109967941,P44) p(12.905568718732548,12.158128386168379,P45) p(13.795499810828003,11.702033383650495,P46) p(12.95554440606066,11.159377951537143,P47) p(8.324736190278584,12.056615434734466,P48) p(11.976940807794602,11.3651326536966,P49) p(9.214667282374016,11.600520432216534,P50) p(10.851271719148311,10.62925198868771,P51) p(10.189891807932739,11.37930306230902,P53) p(11.009105604176058,11.616717666439119,P54) p(10.347725692960486,12.36676874006043,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P50,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P55,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P55,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P49,P47) s(P42,P48) s(P43,P48) s(P19,P49) s(P24,P49) s(P44,P50) s(P48,P50) s(P13,P51) s(P19,P51) s(P14,P53) s(P51,P53) s(P50,P53) s(P51,P54) s(P49,P54) s(P39,P54) s(P53,P55) s(P54,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.35,15.883) print(A0,8.2,15.883) color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.35,15.686) print(A1,8.2,15.686) color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.35,15.489) print(A2,8.2,15.489) color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.35,15.293) print(A3,8.2,15.293) print(min=0.987662367938243,7.35,15.096) print(max=1.000000000000018,7.35,14.899) \geooff \geoprint() \geo ebene(522.74,559.44) x(7.81,14.67) y(8.46,15.81) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-11.9573827245218,-117.24516390610442]; #P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); #N(24,17,18); N(25,24,18); #A(25,21,ab(21,25,[1,25])); #N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50); #N(51,13,19); N(53,14,51); N(54,51,49); #R(53,50); A(53,50); A(54,39); #N(55,53,54); #R(44,55); R(38,55); A(44,55); A(38,55); # # #//Ende der Eingabe, weiter mit fedgeo: p(9.843022340097214,8.460794315201198,P1) p(10.843013021899832,8.465111294229926,P2) p(10.33927906749204,9.328970138704351,P3) p(11.339269749294658,9.333287117733079,P4) p(11.84300370370245,8.469428273258654,P5) p(10.835535794886866,10.197145962207504,P6) p(10.139141200769586,9.415945413381008,P7) p(9.16389665495708,9.194816320173082,P8) p(9.460015515629452,10.149967418352892,P9) p(8.484770969816948,9.928838325144966,P10) p(8.780889830489318,10.883989423324776,P11) p(7.805645284676814,10.66286033011685,P12) p(9.85122721658682,10.373601686639846,P13) p(9.66266327799079,11.355662601787756,P14) p(11.741393289897585,9.46425254105996,P15) p(12.653741585017201,9.05483760680337,P16) p(12.552131171212338,10.049661874604675,P17) p(13.464479466331953,9.640246940348083,P18) p(11.799672284233925,10.462552876038941,P19) p(8.687418732178285,11.134533508579828,P20) p(7.870456822512903,12.661809920417546,P21) p(7.838051053594858,11.662335125267198,P22) p(8.71982450109633,12.134008303730177,P23) p(13.36286905252709,10.63507120814939,P24) p(14.275217347646706,10.225656273892797,P25) p(12.3026518300624,14.426671879109147,P26) p(11.30266114825978,14.42235490008042,P27) p(11.80639510266757,13.558496055605994,P28) p(10.806404420864954,13.554179076577267,P29) p(10.302670466457162,14.418037921051692,P30) p(11.310138375272746,12.690320232102842,P31) p(12.006532969390024,13.471520780929335,P32) p(12.981777515202529,13.692649874137263,P33) p(12.685658654530158,12.737498775957452,P34) p(13.660903200342663,12.958627869165378,P35) p(13.36478433967029,12.003476770985568,P36) p(14.340028885482797,12.224605864193494,P37) p(12.29444695357279,12.5138645076705,P38) p(12.48301089216882,11.53180359252259,P39) p(10.404280880262029,13.423213653250386,P40) p(9.491932585142408,13.832628587506978,P41) p(9.593542998947276,12.837804319705677,P42) p(8.681194703827657,13.247219253962264,P43) p(10.346001885925686,12.424913318271404,P44) p(13.458255437981325,11.752932685730515,P45) p(14.307623116564752,11.225131069043146,P46) p(13.42584966906328,10.753457890580167,P47) p(8.782805117632522,12.252394986160958,P48) p(12.51350137394366,11.162872824836754,P49) p(9.63217279621595,11.724593369473594,P50) p(10.815363705933878,10.639008600471284,P51) p(10.626799767337848,11.621069515619196,P53) p(11.529192795643615,11.339328549269096,P54) p(11.340628857047584,12.321389464417006,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P50,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P55,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P55,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P49,P47) s(P42,P48) s(P43,P48) s(P19,P49) s(P24,P49) s(P44,P50) s(P48,P50) s(P13,P51) s(P19,P51) s(P14,P53) s(P51,P53) s(P50,P53) s(P51,P54) s(P49,P54) s(P39,P54) s(P53,P55) s(P54,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.81,15.805) print(A0,8.66,15.805) color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.81,15.608) print(A1,8.66,15.608) color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.81,15.411) print(A2,8.66,15.411) color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.81,15.214) print(A3,8.66,15.214) print(min=0.9730445023401546,7.81,15.017) print(max=1.0000000000000038,7.81,14.821) \geooff \geoprint() \geo ebene(565.87,501.58) x(7.29,14.72) y(8.46,15.05) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-11.9573827245218,-117.24516390610442]; #P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); #N(24,17,18); N(25,24,18); #A(25,21,ab(21,25,[1,25])); #N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50); #N(51,13,19); N(53,14,51); N(54,51,49); #R(53,50); A(53,50); A(54,39); #N(55,53,54); #R(44,55); R(38,55); A(44,55); A(38,55); # # #//Ende der Eingabe, weiter mit fedgeo: p(9.843022340097214,8.460794315201198,P1) p(10.843013021899832,8.465111294229926,P2) p(10.33927906749204,9.328970138704351,P3) p(11.339269749294658,9.333287117733079,P4) p(11.84300370370245,8.469428273258654,P5) p(10.835535794886866,10.197145962207504,P6) p(9.88641345660515,9.459852477175863,P7) p(8.999508150222933,8.997901205382973,P8) p(9.042899266730869,9.996959367357638,P9) p(8.155993960348653,9.535008095564748,P10) p(8.199385076856588,10.534066257539411,P11) p(7.312479770474374,10.072114985746522,P12) p(9.870626082622325,10.459727848821112,P13) p(9.059359210468315,11.044403880607476,P14) p(11.80935289027558,9.468861924260915,P15) p(12.691713228154004,8.998287558045465,P16) p(12.658062414727134,9.997721209047727,P17) p(13.540422752605558,9.527146842832275,P18) p(11.79793169911623,10.468796700330087,P19) p(8.172453904086103,10.58245260881458,P20) p(7.288523211918294,12.071971501425121,P21) p(7.300501491196333,11.07204324358582,P22) p(8.160475624808065,11.582380866653878,P23) p(13.50677193917869,10.526580493834537,P24) p(14.389132277057112,10.056006127619085,P25) p(11.834633148878194,13.667183313843008,P26) p(10.834642467075573,13.662866334814277,P27) p(11.338376421483368,12.799007490339854,P28) p(10.338385739680746,12.794690511311126,P29) p(9.834651785272959,13.658549355785553,P30) p(10.842119694088542,11.930831666836703,P31) p(11.791242032370258,12.668125151868344,P32) p(12.678147338752472,13.130076423661233,P33) p(12.634756222244537,12.131018261686568,P34) p(13.521661528626755,12.592969533479458,P35) p(13.478270412118817,11.593911371504795,P36) p(14.365175718501032,12.055862643297685,P37) p(11.807029406353083,11.668249780223094,P38) p(12.618296278507092,11.08357374843673,P39) p(9.868302598699824,12.659115704783288,P40) p(8.985942260821403,13.129690070998741,P41) p(9.019593074248274,12.13025641999648,P42) p(8.137232736369848,12.600830786211935,P43) p(9.879723789859177,11.659180928714125,P44) p(13.505201584889305,11.54552502022963,P45) p(14.377153997779073,11.055934385458386,P46) p(13.517179864167343,10.545596762390327,P47) p(8.170883549796718,11.601397135209664,P48) p(12.634819526288927,11.016171128605796,P49) p(9.042835962686482,11.11180650043841,P50) p(10.83302198685169,10.731378586943695,P51) p(10.02175511469768,11.316054618730057,P53) p(11.669909814024388,11.278753015219404,P54) p(10.858642941870377,11.863429047005768,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P50,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P55,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P55,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P49,P47) s(P42,P48) s(P43,P48) s(P19,P49) s(P24,P49) s(P44,P50) s(P48,P50) s(P13,P51) s(P19,P51) s(P14,P53) s(P51,P53) s(P50,P53) s(P51,P54) s(P49,P54) s(P39,P54) s(P53,P55) s(P54,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.29,15.046) print(A0,8.14,15.046) color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.29,14.849) print(A1,8.14,14.849) color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.29,14.652) print(A2,8.14,14.652) color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.29,14.455) print(A3,8.14,14.455) print(min=0.968262274487562,7.29,14.258) print(max=1.0000000000000078,7.29,14.061) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1167, vom Themenstarter, eingetragen 2018-04-25

Versuch... \geo ebene(495.16,509.26) x(7.41,14.59) y(8.88,16.26) form(.) #//Eingabe war: # #Fig.3a 4-regular matchstick graph with 64 vertices. Extended #version of Fig.1a. This graph is rigid. # # # # #P[1]=[-72.57471077076244,307.4349821718721]; #P[2]=[-107.98297565127419,248.2807558702591]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); #L(12,10,8); N(13,12,3); N(14,13,6); N(15,14,7); L(16,15,7); N(17,15,16); #N(18,17,16); N(19,12,13); M(19,18,17,green_angle,1); N(21,20,19); N(22,21,19); #N(23,21,22); N(24,23,22); N(25,17,20); #N(26,14,25); N(27,26,25); R(23,27); A(23,27); #A(11,24,ab(11,24,[1,27],"gespiegelt"),Bew(2)); #N(53,12,13); N(54,39,38); R(27,52); //N(55,53,26); N(56,51,54); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.947304220515587,14.459342720916169,P1) p(8.433707533698376,13.601310994643542,P2) p(9.433583149312092,13.58553907969663,P3) p(8.919986462494881,12.727507353424004,P4) p(7.9201108468811645,12.743279268370916,P5) p(8.40638977567767,11.869475627151377,P6) p(7.406514160063954,11.885247542098288,P7) p(9.723788231827777,13.829205767408022,P8) p(9.881260835773071,14.816729123590896,P9) p(10.657744847085262,14.186592170082747,P10) p(10.815217451030556,15.174115526265624,P11) p(10.500272243139968,13.199068813899874,P12) p(9.686400015151554,12.618024928716341,P13) p(9.385152448060673,11.664478965837873,P14) p(8.385276832446957,11.680250880784786,P15) p(7.718363179866968,10.93511587288191,P16) p(8.69712585224997,10.73011921156841,P17) p(8.03021219966998,9.984984203665533,P18) p(8.95927175960298,9.61505402904186,P19) p(8.815110908486997,10.604608296884464,P20) p(9.744170468419995,10.23467812226079,P21) p(9.888331319535979,9.245123854418186,P22) p(10.673230028352995,9.864747947637117,P23) p(10.817390879468979,8.87519367979451,P24) p(9.482024561066986,11.34974330478734,P25) p(10.376297006093008,11.797266258463662,P26) p(10.316727030240338,10.799042126328542,P27) p(12.683623498119204,14.460631929255452,P28) p(13.197812186302212,13.602954837953233,P29) p(12.19794769289904,13.586492917299262,P30) p(12.712136381082052,12.728815825997044,P31) p(13.712000874485224,12.745277746651013,P32) p(13.226325069265059,11.871138734694824,P33) p(14.226189562668232,11.887600655348797,P34) p(11.907574526249888,13.82995927782638,P35) p(11.74942047457488,14.817373727760538,P36) p(10.973371502705564,14.186701076331463,P37) p(11.131525554380575,13.199286626397306,P38) p(11.945798564227236,12.618804528968573,P39) p(12.247704097173328,11.665466682674541,P40) p(13.247568590576499,11.681928603328519,P41) p(13.914996298520398,10.937254006830992,P42) p(12.936375326428665,10.731581954810714,P43) p(13.603803034372568,9.98690735831319,P44) p(12.674998982738034,9.616336132140297,P45) p(12.81847691277803,10.605989649080161,P46) p(11.889672861143493,10.235418422907268,P47) p(11.746194931103503,9.245764905967402,P48) p(10.96086880950898,9.864847196734372,P49) p(12.151049204834127,11.350664245577688,P50) p(11.256468139261662,11.797569959480779,P51) p(11.316726970711395,10.799387173998927,P52) p(10.59653489442831,12.2037128464355,P53) p(11.035949816488548,12.203864465539716,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P6,P7) s(P5,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P36,P11) s(P37,P11) s(P10,P12) s(P8,P12) s(P12,P13) s(P3,P13) s(P13,P14) s(P6,P14) s(P14,P15) s(P7,P15) s(P15,P16) s(P7,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P18,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P21,P22) s(P19,P22) s(P21,P23) s(P22,P23) s(P27,P23) s(P23,P24) s(P22,P24) s(P48,P24) s(P49,P24) s(P17,P25) s(P20,P25) s(P14,P26) s(P25,P26) s(P26,P27) s(P25,P27) s(P28,P29) s(P28,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P29,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P28,P35) s(P28,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P35,P38) s(P37,P38) s(P30,P39) s(P38,P39) s(P33,P40) s(P39,P40) s(P34,P41) s(P40,P41) s(P34,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P44,P45) s(P44,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P45,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P52,P49) s(P43,P50) s(P46,P50) s(P40,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P12,P53) s(P13,P53) s(P39,P54) s(P38,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10) color(#008000) m(P17,P18,MA11) m(P18,P19,MB11) b(P18,MA11,MB11) pen(2) color(red) s(P23,P27) abstand(P23,P27,A0) print(abs(P23,P27):,7.41,16.262) print(A0,8.35,16.262) color(red) s(P27,P52) abstand(P27,P52,A1) print(abs(P27,P52):,7.41,16.044) print(A1,8.35,16.044) print(min=0.9999999999999858,7.41,15.827) print(max=1.0000000000000053,7.41,15.609) \geooff \geoprint() Ich wär so gern 'n 4/10. ;-) \geo ebene(492.98,498.54) x(7.58,14.73) y(8.83,16.06) form(.) #//Eingabe war: # #Fig.3a 4-regular matchstick graph with 64 vertices. Extended #version of Fig.1a. This graph is rigid. # # # # #P[1]=[-63.6209651262796,306.8407163799726]; #P[2]=[-97.99145355664761,247.0775401236111]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); #L(12,10,8); N(13,12,3); N(14,13,6); N(15,14,7); L(16,15,7); N(17,15,16); #N(18,17,16); N(19,12,13); M(19,18,17,green_angle,1); N(21,20,19); N(22,21,19); #N(23,21,22); N(24,23,22); N(25,17,20); #N(26,25,23); N(27,12,13); N(28,14,25);// N(29,14,28); # #A(11,24,ab(11,24,[1,28],"gespiegelt"),Bew(2)); #N(55,26,52); R(26,52); A(26,52); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.077178251709407,14.450722898881978,P1) p(8.578634506578256,13.583858356874055,P2) p(9.578633094162655,13.585539079696604,P3) p(9.080089349031503,12.718674537688681,P4) p(8.080090761447105,12.716993814866132,P5) p(8.581545603900352,11.851809995680759,P6) p(7.581547016315953,11.85012927285821,P7) p(9.863186685860953,13.832507126321428,P8) p(10.005573032842838,14.822318284165767,P9) p(10.791581466994383,14.204102511605221,P10) p(10.933967813976269,15.193913669449561,P11) p(10.649195120012497,13.21429135376088,P12) p(9.843932530447525,12.621373010439378,P13) p(9.563281867224141,11.6615630265195,P14) p(8.563283279639741,11.65988230369695,P15) p(7.907656439691202,10.90479724442277,P16) p(8.889392703014991,10.71455027526151,P17) p(8.23376586306645,9.959465215987331,P18) p(9.160575292426653,9.583933217818045,P19) p(9.022390828095086,10.574339727195582,P20) p(9.949200257455287,10.198807729026296,P21) p(10.087384721786854,9.208401219648758,P22) p(10.87600968681549,9.82327573085701,P23) p(11.014194151147056,8.832869221479472,P24) p(9.678017668043625,11.329424786469762,P25) p(10.490028459290382,10.74578236606253,P26) p(10.760046172916214,12.22045432281962,P27) p(10.55113906189968,11.816927639375116,P28) p(12.80891022631592,14.497787998029544,P29) p(13.329157937879007,13.643772589144335,P30) p(12.329435042779519,13.620232559112587,P31) p(12.849682754342606,12.766217150227376,P32) p(13.849405649442097,12.789757180259128,P33) p(13.369930465905696,11.912201741342168,P34) p(14.369653361005184,11.93574177137392,P35) p(12.03874336539289,13.859945536025041,P36) p(11.871439020146093,14.845850833739552,P37) p(11.101272159223065,14.208008371735048,P38) p(11.268576504469857,13.222103074020534,P39) p(12.088536506294156,12.649682253811925,P40) p(12.393304551281389,11.697255648369458,P41) p(13.393027446380879,11.720795678401204,P42) p(14.067489180651613,10.9824858728287,P43) p(13.090863266027302,10.767539779855985,P44) p(13.765325000298041,10.02922997428348,P45) p(12.848281383914381,9.630443056682143,P46) p(12.961443590766564,10.624019583649417,P47) p(12.044399974382896,10.225232666048075,P48) p(11.931237767530723,9.231656139080805,P49) p(11.127356357999204,9.826445748446742,P50) p(12.286981856495824,11.36232938922192,P51) p(11.48994896061986,10.758393496190575,P52) p(11.182825533426222,12.225786472249254,P53) p(11.401843240419769,11.82765683342757,P54) p(10.97906715125481,11.61804445841879,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P6,P7) s(P5,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P37,P11) s(P38,P11) s(P10,P12) s(P8,P12) s(P12,P13) s(P3,P13) s(P13,P14) s(P6,P14) s(P14,P15) s(P7,P15) s(P15,P16) s(P7,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P18,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P21,P22) s(P19,P22) s(P21,P23) s(P22,P23) s(P23,P24) s(P22,P24) s(P49,P24) s(P50,P24) s(P17,P25) s(P20,P25) s(P25,P26) s(P23,P26) s(P52,P26) s(P12,P27) s(P13,P27) s(P14,P28) s(P25,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P29,P36) s(P29,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P36,P39) s(P38,P39) s(P31,P40) s(P39,P40) s(P34,P41) s(P40,P41) s(P35,P42) s(P41,P42) s(P35,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P46,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P44,P51) s(P47,P51) s(P50,P52) s(P51,P52) s(P39,P53) s(P40,P53) s(P41,P54) s(P51,P54) s(P26,P55) s(P52,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) b(P1,MA10,MB10) color(#008000) m(P17,P18,MA11) m(P18,P19,MB11) b(P18,MA11,MB11) pen(2) color(red) s(P26,P52) abstand(P26,P52,A0) print(abs(P26,P52):,7.58,16.064) print(A0,8.52,16.064) print(min=0.9999999999999961,7.58,15.847) print(max=1.0000000247910488,7.58,15.629) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1168, eingetragen 2018-04-25

\quoteon(2018-04-24 22:55 - Slash in Beitrag No. 1165) Das ist das genaueste, was ich erreicht habe. Eine Abweichung von weniger als 0,004 bei zwei Kanten. Die gemessenen Kanten haben natürlich je ein symmetrisches Pendant, was nur gezeichnet, aber nicht extra gemessen wurde, da es dieselben Abstände wären. Es kommt darauf an in welcher Reihenfolge die drei Kanten gemessen werden. \quoteoff ich hätte kante 3 als erstes eingesetzt.... wiso gibst du den zwiten winkel als minus (-11.5) ein? ich hab keinerlei ahnung wie stefan die optimierungen ablaufen lässt, aber ganz evtl läuft da auch was falsch wenn der winkel negativ is??? egal, du bist auf einem guten weg endlich das program zu nutzen, das is also nur ne frage der zeit bis du ergebnisse erhältst... glück auf haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1169, vom Themenstarter, eingetragen 2018-04-25

Ich hatte alle Möglichkeiten schon durchgespielt. Kante 3 als erstes liefert schlechtere Ergebnisse. |P23,P51|=1.00000000000000133227 |P41,P54|=0.99999999999999467093 |P51,P53|=1.01833482185681178933 |P23,P51|=1.00000000000000022204 |P51,P53|=1.00000000000000222045 |P41,P54|=0.98416592076197917383 Der negative Winkel spielt (wohl) keine Rolle. Dann addiert man 360 und der Winkel ist positiv. Das Ergebnis ist dasselbe. Aber Stefan wird sich bestimmt dazu äußern. Meine Fähigkeiten das Programm zu bedienen schätze ich so mit 20-30% ein. Da ist noch viel Luft nach Oben. ;-) \geo ebene(366.74,427.41) x(7.69,14.1) y(9.32,16.79) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-120.28666469129485,47.72364162253757]; #P[2]=[-82.55460323533744,4.6944501798833045]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); #N(24,17,18); N(25,24,18); #N(26,19,24); N(27,13,19); #A(25,21,ab(21,25,[1,28])); #N(53,27,52); N(54,52,27); #R(41,54); A(41,54); A(14,53); #R(51,53); A(51,53); A(26,54); #R(23,51); A(23,51); A(26,49); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.898171585258503,10.833898805612563,P1) p(8.557482566392084,10.082028450992382,P2) p(8.878965903278782,11.028943686958197,P3) p(9.538276884412364,10.277073332338018,P4) p(9.216793547525665,9.330158096372204,P5) p(9.859760221299064,11.223988568303831,P6) p(8.72691013355351,11.393534775301683,P7) p(7.82788189278369,11.831425426376036,P8) p(8.656620441078697,12.391061396065156,P9) p(7.757592200308878,12.828952047139511,P10) p(8.586330748603885,13.388588016828631,P11) p(7.687302507834065,13.826478667902984,P12) p(9.4146691289205,12.119473866611546,P13) p(9.546940578715693,13.110687397375264,P14) p(9.720693898152035,10.19391989029378,P15) p(10.216783379193355,9.325648488714668,P16) p(10.720683729819726,10.189410282636246,P17) p(11.216773210861044,9.321138881057134,P18) p(10.636890542077904,10.594648863115784,P19) p(8.647912337945872,13.548578048449617,P20) p(9.129250330293969,15.212403080453374,P21) p(8.408276419064018,14.51944087417818,P22) p(9.368886249175825,14.24154025472481,P23) p(11.720673561487416,10.18490067497871,P24) p(12.216763042528735,9.316629273399599,P25) p(11.467033565706728,11.15219936335804,P26) p(10.191799449699339,11.490134161423498,P27) p(13.447841787564203,13.69513354824041,P28) p(12.788530806430622,14.44700390286059,P29) p(12.467047469543921,13.500088666894776,P30) p(11.80773648841034,14.251959021514955,P31) p(12.12921982529704,15.198874257480767,P32) p(11.486253151523641,13.305043785549142,P33) p(12.619103239269196,13.13549757855129,P34) p(13.518131480039015,12.697606927476937,P35) p(12.689392931744006,12.137970957787815,P36) p(13.588421172513826,11.700080306713462,P37) p(12.759682624218819,11.140444337024341,P38) p(13.658710864988638,10.702553685949988,P39) p(11.931344243902206,12.409558487241426,P40) p(11.799072794107012,11.418344956477707,P41) p(11.625319474670668,14.335112463559192,P42) p(11.129229993629354,15.203383865138305,P43) p(10.625329643002985,14.33962207121673,P44) p(10.129240161961667,15.207893472795842,P45) p(10.709122830744805,13.93438349073719,P46) p(12.698101034876832,10.980454305403356,P47) p(12.937736953758687,10.009591479674793,P48) p(11.97712712364688,10.28749209912816,P49) p(9.625339811335406,14.344131678874323,P50) p(9.87897980711596,13.376832990494922,P51) p(11.154213923123368,13.038898192429475,P52) p(10.324070899494545,12.481347692187216,P53) p(11.021942473328162,12.047684661665759,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P53,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P45,P21) s(P50,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P51,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P19,P26) s(P24,P26) s(P54,P26) s(P49,P26) s(P13,P27) s(P19,P27) s(P28,P29) s(P28,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P29,P32) s(P31,P32) s(P30,P33) s(P31,P33) s(P28,P34) s(P28,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P47,P39) s(P48,P39) s(P33,P40) s(P34,P40) s(P38,P41) s(P40,P41) s(P54,P41) s(P32,P42) s(P32,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P33,P46) s(P42,P46) s(P41,P47) s(P48,P47) s(P49,P47) s(P25,P48) s(P25,P49) s(P48,P49) s(P44,P50) s(P45,P50) s(P46,P51) s(P50,P51) s(P53,P51) s(P40,P52) s(P46,P52) s(P27,P53) s(P52,P53) s(P52,P54) s(P27,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P41,P54) abstand(P41,P54,A0) print(abs(P41,P54):,7.69,16.785) print(A0,8.82,16.785) color(red) s(P51,P53) abstand(P51,P53,A1) print(abs(P51,P53):,7.69,16.523) print(A1,8.82,16.523) color(red) s(P23,P51) abstand(P23,P51,A2) print(abs(P23,P51):,7.69,16.261) print(A2,8.82,16.261) print(min=0.9999999999998886,7.69,15.999) print(max=1.0039492470558284,7.69,15.737) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1170, eingetragen 2018-04-26

Es bleibt ein super interessanter Graph, ist den der punktsymetrische gegenwinkel p26-49 eins? Oder auch 1.0034?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1171, vom Themenstarter, eingetragen 2018-04-26

\quoteon(2018-04-26 07:03 - haribo in Beitrag No. 1170) Es bleibt ein super interessanter Graph, ist den der punktsymetrische gegenwinkel p26-49 eins? Oder auch 1.0034? \quoteoff Nein, gleiche Länge. Wenn der Graph so aufgebaut ist wie dieser, also mit einer halben gespiegelten Hülle, dann sind bzw. sollten alle symmetrischen Kantenpaare gleichlang sein. Die einzige Ausnahme bildet #1163. Das kann Stefan vielleicht aufklären. EDIT: Habe Meinen Fehler gefunden. Die parralele Kante ist gleich falsch. Ich hatte sie einfach nicht gemessen. \geo ebene(420.26,514.11) x(7.86,14.54) y(8.32,16.49) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-5.3968574786390775,-105.76785973360921]; #P[2]=[57.555045394138915,-105.49609515673293]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #N(24,17,18); N(25,24,18); #A(25,21,ab(21,25,[1,25])); #N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50); #N(51,13,19); N(53,14,51); N(54,51,49); #R(53,50); A(53,50); R(54,39); A(54,39); #N(55,53,54); #R(44,55); A(44,55); R(38,55); A(38,55); # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.914270944270541,8.319878044329112,P1) p(10.91426162607316,8.32419502335784,P2) p(10.410527671665367,9.188053867832265,P3) p(11.410518353467985,9.192370846860992,P4) p(11.914252307875778,8.328512002386567,P5) p(10.906784399060193,10.056229691335417,P6) p(10.204325334749889,9.27688820653412,P7) p(9.230503027360813,9.04957759606594,P8) p(9.52055741784016,10.006587758270948,P9) p(8.546735110451085,9.779277147802771,P10) p(8.836789500930431,10.736287310007778,P11) p(7.862967193541355,10.5089766995396,P12) p(9.923176914939654,10.236552505150154,P13) p(9.714959944420851,11.214635166885845,P14) p(11.681610264465613,9.301074432073188,P15) p(12.640195057045625,9.016267136811404,P16) p(12.40755301363546,9.988829566498024,P17) p(13.366137806215473,9.704022271236239,P18) p(11.881207122561603,10.280952533797178,P19) p(8.741137637031775,10.987324556417667,P20) p(7.912614845227278,12.508360382248368,P21) p(7.887791019384316,11.508668540893984,P22) p(8.765961462874737,11.98701639777205,P23) p(13.133495762805309,10.67658470092286,P24) p(14.092080555385323,10.391777405661074,P25) p(12.09042445634206,14.580259743580331,P26) p(11.090433774539438,14.575942764551602,P27) p(11.594167728947232,13.712083920077179,P28) p(10.594177047144614,13.70776694104845,P29) p(10.09044309273682,14.571625785522874,P30) p(11.097911001552406,12.843908096574026,P31) p(11.800370065862712,13.623249581375324,P32) p(12.774192373251788,13.8505601918435,P33) p(12.48413798277244,12.893550029638496,P34) p(13.457960290161518,13.120860640106672,P35) p(13.167905899682168,12.163850477901665,P36) p(14.141728207071246,12.391161088369842,P37) p(12.081518485672946,12.66358528275929,P38) p(12.289735456191748,11.685502621023598,P39) p(10.323085136146988,13.599063355836254,P40) p(9.364500343566974,13.883870651098041,P41) p(9.59714238697714,12.911308221411423,P42) p(8.63855759439712,13.196115516673192,P43) p(10.123488278050997,12.619185254112269,P44) p(13.263557763580826,11.912813231491775,P45) p(14.116904381228284,11.391469247015458,P46) p(13.238733937737862,10.913121390137391,P47) p(8.871199637807319,12.22355308698667,P48) p(12.280149145157852,11.197928685399178,P49) p(9.724546255454731,11.702209102510276,P50) p(10.897599638441065,10.461275347611915,P51) p(10.689382667922262,11.439358009347606,P53) p(11.296541661037313,11.378251499213915,P54) p(11.08832469051851,12.356334160949606,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P43,P21) s(P48,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P50,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37) s(P31,P38) s(P32,P38) s(P55,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P31,P44) s(P40,P44) s(P55,P44) s(P39,P45) s(P46,P45) s(P47,P45) s(P25,P46) s(P25,P47) s(P46,P47) s(P49,P47) s(P42,P48) s(P43,P48) s(P19,P49) s(P24,P49) s(P44,P50) s(P48,P50) s(P13,P51) s(P19,P51) s(P14,P53) s(P51,P53) s(P50,P53) s(P51,P54) s(P49,P54) s(P39,P54) s(P53,P55) s(P54,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.86,16.486) print(A0,8.9,16.486) color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.86,16.248) print(A1,8.9,16.248) color(red) s(P54,P39) abstand(P54,P39,A2) print(abs(P54,P39):,7.86,16.01) print(A2,8.9,16.01) color(red) s(P44,P55) abstand(P44,P55,A3) print(abs(P44,P55):,7.86,15.772) print(A3,8.9,15.772) color(red) s(P38,P55) abstand(P38,P55,A4) print(abs(P38,P55):,7.86,15.533) print(A4,8.9,15.533) print(min=0.9999999999999133,7.86,15.295) print(max=1.0396331884787928,7.86,15.057) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1172, vom Themenstarter, eingetragen 2018-04-26

Fast 112er. \geo ebene(473.21,442.38) x(7.73,15.25) y(9.56,16.59) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-143.0243171166264,171.19219992213064]; #P[2]=[-132.90805116349134,109.05785278261072]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); #N(24,17,18); N(25,24,18); #N(26,13,19); N(27,14,26); N(28,26,19); #R(24,28); A(24,28); #A(25,21,ab(21,25,[1,28])); # #N(55,54,23); N(56,28,50); # #R(27,55); A(27,55); A(53,56); #R(27,56); A(27,56); R(53,55); A(53,55); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.72805939358418,12.71938729263494,P1) p(7.888756230790458,11.73238347981966,P2) p(8.663178187717453,12.365052929555748,P3) p(8.823875024923728,11.378049116740469,P4) p(8.049453067996735,10.74537966700438,P5) p(9.598296981850723,12.010718566476555,P6) p(8.703214597663443,12.497864544464168,P7) p(8.407481323055844,13.453135097914794,P8) p(9.382636527135107,13.231612349744022,P9) p(9.086903252527506,14.186882903194647,P10) p(10.062058456606769,13.965360155023877,P11) p(9.766325181999168,14.920630708474501,P12) p(9.562081970660026,13.010062587804775,P13) p(10.558281334551939,13.097164983761207,P14) p(8.848757866932148,11.34630548472136,P15) p(8.969522491397282,10.353624314617988,P16) p(9.768827290332693,10.954550132334967,P17) p(9.889591914797826,9.961868962231597,P18) p(9.797680643009134,11.03079706162881,P19) p(10.26254805994434,14.052435537211835,P20) p(11.76630620745724,14.911918773690921,P21) p(10.766315694728204,14.916274741082713,P22) p(11.262538572673376,14.048079569820045,P23) p(10.68889671373324,10.562794779948575,P24) p(10.809661338198373,9.570113609845205,P25) p(9.761465631818435,12.03014108295703,P26) p(10.757664995710346,12.117243478913462,P27) p(10.645030447004121,11.561832191982404,P28) p(14.847908152071435,11.762645090901188,P29) p(14.687211314865156,12.749648903716466,P30) p(13.912789357938163,12.116979453980377,P31) p(13.752092520731885,13.103983266795659,P32) p(14.526514477658878,13.736652716531747,P33) p(12.977670563804892,12.47131381705957,P34) p(13.872752947992172,11.984167839071958,P35) p(14.168486222599771,11.028897285621333,P36) p(13.19333101852051,11.250420033792105,P37) p(13.48906429312811,10.295149480341479,P38) p(12.513909089048845,10.51667222851225,P39) p(12.809642363656446,9.561401675061624,P40) p(13.013885574995587,11.47196979573135,P41) p(12.017686211103676,11.384867399774919,P42) p(13.727209678723467,13.135726898814768,P43) p(13.606445054258337,14.128408068918135,P44) p(12.80714025532292,13.52748225120116,P45) p(12.686375630857784,14.520163421304531,P46) p(12.778286902646482,13.451235321907316,P47) p(12.313419485711274,10.429596846324293,P48) p(11.809651850927409,9.565757642453415,P49) p(11.313428972982239,10.43395281371608,P50) p(11.887070831922376,13.91923760358755,P51) p(12.81450191383718,12.451891300579096,P52) p(11.818302549945269,12.364788904622664,P53) p(11.930937098651498,12.920200191553722,P54) p(10.947077280131731,13.099141124551885,P55) p(11.628890265523887,11.382891258984241,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P46,P21) s(P51,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P17,P24) s(P18,P24) s(P28,P24) s(P24,P25) s(P18,P25) s(P13,P26) s(P19,P26) s(P14,P27) s(P26,P27) s(P55,P27) s(P56,P27) s(P26,P28) s(P19,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P48,P40) s(P49,P40) s(P34,P41) s(P35,P41) s(P39,P42) s(P41,P42) s(P33,P43) s(P33,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P34,P47) s(P43,P47) s(P42,P48) s(P49,P48) s(P50,P48) s(P25,P49) s(P25,P50) s(P49,P50) s(P45,P51) s(P46,P51) s(P54,P51) s(P41,P52) s(P47,P52) s(P42,P53) s(P52,P53) s(P56,P53) s(P55,P53) s(P47,P54) s(P52,P54) s(P54,P55) s(P23,P55) s(P28,P56) s(P50,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P24,P28) abstand(P24,P28,A0) print(abs(P24,P28):,7.73,16.589) print(A0,8.76,16.589) color(red) s(P27,P55) abstand(P27,P55,A1) print(abs(P27,P55):,7.73,16.35) print(A1,8.76,16.35) color(red) s(P27,P56) abstand(P27,P56,A2) print(abs(P27,P56):,7.73,16.112) print(A2,8.76,16.112) color(red) s(P53,P55) abstand(P53,P55,A3) print(abs(P53,P55):,7.73,15.874) print(A3,8.76,15.874) print(min=0.9999999999999951,7.73,15.635) print(max=1.1394326016384873,7.73,15.397) \geooff \geoprint() Etwas genauer mit drittem Winkel. \geo ebene(650.31,509.9) x(6.94,14.7) y(8.69,14.77) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # # #P[1]=[-256.735112657664,93.0795504850324]; #P[2]=[-227.73768842948547,14.467376781584136]; D=ab(1,2); #A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #N(15,14,5); N(16,14,15); N(17,16,15); N(18,16,17); N(19,18,17); #M(20,19,18,orange_angle); N(21,20,19); N(22,20,21); N(23,22,21); #N(24,6,14); N(25,13,24); N(26,25,24); N(27,26,20); #A(23,12,ab(12,23,[1,27])); N(53,48,11); N(54,22,38); N(55,27,54); N(56,52,53); # #R(52,55); A(52,55); A(56,27); #R(25,56); A(25,56); A(55,50); #R(26,18); A(26,18); A(44,51); #R(13,53); A(13,53); A(54,39); # # #//Ende der Eingabe, weiter mit fedgeo: p(6.935960886458021,11.110870189919583,P1) p(7.282034476109867,10.17266281916113,P2) p(7.921509098378568,10.941475024757727,P3) p(8.267582688030414,10.003267653999275,P4) p(7.628108065761712,9.23445544840268,P5) p(8.907057310299114,10.77207985959587,P6) p(7.9276782210876,10.982430600247218,P7) p(7.543051501280727,11.905502800246008,P8) p(8.534768835910306,11.777063210573644,P9) p(8.150142116103433,12.700135410572432,P10) p(9.14185945073301,12.57169582090007,P11) p(8.757232730926138,13.494768020898858,P12) p(8.599121139764472,11.723486878109219,P13) p(8.277743015809266,9.994701745122837,P14) p(8.611318146878187,9.051978226835343,P15) p(9.26095309692574,9.8122245235555,P16) p(9.594528227994662,8.869501005268006,P17) p(10.244163178042216,9.629747301988164,P18) p(10.577738309111137,8.68702378370067,P19) p(11.067032243596097,9.559142723797848,P20) p(11.577662433599333,8.699342276567645,P21) p(12.066956368084295,9.571461216664824,P22) p(12.57758655808753,8.71166076943462,P23) p(9.26547086648496,9.838516941125874,P24) p(8.957534695950313,10.789923959639221,P25) p(9.935445428589007,10.580900996809651,P26) p(10.934979720678328,10.550385444422345,P27) p(14.398858402555646,11.095558600413895,P28) p(14.052784812903802,12.033765971172347,P29) p(13.413310190635102,11.26495376557575,P30) p(13.067236600983257,12.203161136334202,P31) p(13.706711223251958,12.971973341930797,P32) p(12.427761978714553,11.434348930737608,P33) p(13.407141067926071,11.22399819008626,P34) p(13.791767787732942,10.30092599008747,P35) p(12.800050453103363,10.429365579759834,P36) p(13.184677172910236,9.506293379761045,P37) p(12.192959838280657,9.63473296943341,P38) p(12.735698149249197,10.482941912224259,P39) p(13.057076273204405,12.21172704521064,P40) p(12.723501142135484,13.154450563498134,P41) p(12.073866192087928,12.394204266777978,P42) p(11.74029106101901,13.336927785065473,P43) p(11.090656110971455,12.576681488345315,P44) p(10.757080979902534,13.519405006632809,P45) p(10.267787045417572,12.647286066535631,P46) p(9.757156855414339,13.507086513765834,P47) p(9.267862920929396,12.634967573668671,P48) p(12.069348422528707,12.367911849207603,P49) p(12.377284593063358,11.416504830694258,P50) p(11.399373860424664,11.625527793523828,P51) p(10.39983956833534,11.656043345911133,P52) p(9.652489640736293,11.711895373669893,P53) p(11.682329648277426,10.494533416663616,P54) p(11.377750300974046,11.447020383081659,P55) p(9.957068988039603,10.759408407251827,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P47,P12) s(P48,P12) s(P7,P13) s(P6,P13) s(P53,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P16,P18) s(P17,P18) s(P18,P19) s(P17,P19) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P37,P23) s(P38,P23) s(P6,P24) s(P14,P24) s(P13,P25) s(P24,P25) s(P56,P25) s(P25,P26) s(P24,P26) s(P18,P26) s(P26,P27) s(P20,P27) s(P28,P29) s(P28,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P29,P32) s(P31,P32) s(P30,P33) s(P31,P33) s(P28,P34) s(P28,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P33,P39) s(P34,P39) s(P32,P40) s(P32,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P51,P44) s(P43,P45) s(P44,P45) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P33,P49) s(P40,P49) s(P39,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P46,P52) s(P51,P52) s(P55,P52) s(P48,P53) s(P11,P53) s(P22,P54) s(P38,P54) s(P39,P54) s(P27,P55) s(P54,P55) s(P50,P55) s(P52,P56) s(P53,P56) s(P27,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P18,P19,MA12) m(P19,P20,MB12) b(P19,MA12,MB12) pen(2) color(red) s(P52,P55) abstand(P52,P55,A0) print(abs(P52,P55):,6.94,14.773) print(A0,7.71,14.773) color(red) s(P25,P56) abstand(P25,P56,A1) print(abs(P25,P56):,6.94,14.594) print(A1,7.71,14.594) color(red) s(P26,P18) abstand(P26,P18,A2) print(abs(P26,P18):,6.94,14.415) print(A2,7.71,14.415) color(red) s(P13,P53) abstand(P13,P53,A3) print(abs(P13,P53):,6.94,14.235) print(A3,7.71,14.235) print(min=0.9999999999999739,6.94,14.056) print(max=1.0534322768051052,6.94,13.877) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1173, vom Themenstarter, eingetragen 2018-04-26

124er Versuch. 3 Kanten falsch. \geo ebene(437.48,539.25) x(6.83,14.48) y(7.29,16.71) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-181.319763375821,21.63438411485348]; #P[2]=[-155.11820896144957,-29.24486827937457]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,5]),D); #N(24,17,18); N(25,24,18); #N(26,13,19); N(27,21,23); N(28,21,27); N(29,26,19); N(30,26,29); # #A(25,28,ab(25,28,[1,30],"gespiegelt")); #N(59,57,29); R(24,59); R(30,58); A(24,59); A(54,59); A(30,58); N(60,44,56); #N(60,30,58); N(61,14,60); N(62,60,44); #R(61,27); A(61,27); R(62,56); A(62,56); R(61,62); A(61,62); # # #//Ende der Eingabe, weiter mit fedgeo: p(6.8317100503570565,10.378028299186196,P1) p(7.289542776202901,9.488989945039108,P2) p(7.830556212910063,10.33000389337903,P3) p(8.288388938755908,9.440965539231943,P4) p(7.747375502048746,8.59995159089202,P5) p(8.82940237546307,10.281979487571864,P6) p(7.809934401251304,10.585578580606212,P7) p(7.141078409531836,11.328970578371166,P8) p(8.119302760426084,11.536520859791182,P9) p(7.450446768706618,12.279912857556136,P10) p(8.428671119600866,12.487463138976151,P11) p(7.759815127881398,13.230855136741106,P12) p(8.56136691599761,11.24538853489763,P13) p(9.271567769815807,11.94938764514984,P14) p(8.575792680147769,9.160063168196446,P15) p(8.646654945997662,8.162577058379062,P16) p(9.475072124096684,8.722688635683488,P17) p(9.545934389946577,7.725202525866104,P18) p(9.500539433965848,9.540646196329499,P19) p(8.60271177809634,12.692779642914793,P20) p(9.534685871711226,14.152719466616686,P21) p(8.64725049979631,13.691787301678895,P22) p(9.490147150011254,13.153711807852584,P23) p(10.3743515680456,8.28531410317053,P24) p(10.445213833895492,7.287827993353146,P25) p(9.23250397450039,10.504055243655264,P26) p(10.377582521926168,13.614643972790375,P27) p(10.422121243626139,14.613651631554475,P28) p(10.200858413452996,10.254476237004504,P29) p(9.932822953987536,11.21788528433027,P30) p(14.039164033105589,10.400747762543316,P31) p(13.58694523467395,9.508840727956727,P32) p(13.040640484123736,10.346427212760696,P33) p(12.588421685692097,9.454520178174107,P34) p(13.134726436242307,8.616933693370138,P35) p(12.042116935141884,10.292106662978076,P36) p(13.059650647921583,10.602126828598776,P37) p(13.723806727507997,11.349720770487288,P38) p(12.74429334232399,11.551099836542747,P39) p(13.408449421910408,12.298693778431257,P40) p(12.428936036726398,12.500072844486716,P41) p(13.093092116312816,13.247666786375229,P42) p(12.3040733784292,11.25718636011208,P43) p(11.589448365575365,11.95669410917827,P44) p(12.302794569008032,9.171811489177552,P45) p(12.238222235460036,8.173898460031142,P46) p(11.406290368225761,8.728776255838554,P47) p(11.341718034677765,7.7308632266921435,P48) p(11.375666855250302,9.546557006005116,P49) p(12.253604445161775,12.704288051066783,P50) p(11.312444867855035,14.15832334982806,P51) p(12.202768492083923,13.702995068101643,P52) p(11.363280820932884,13.1596163327932,P53) p(10.509786167443492,8.285741022499556,P54) p(11.637623298537616,10.51163670313912,P55) p(10.472957196704085,13.614944614519619,P56) p(10.670861542499322,10.25595778914395,P57) p(10.932817985786633,11.221037486277954,P58) p(10.4389239015936,9.28322713231695,P59) p(10.430090582922531,12.08548248650036,P60) p(9.75605814634898,12.824184235819205,P61) p(11.099452573566484,12.828418907387883,P62) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P21,P22) s(P21,P23) s(P22,P23) s(P17,P24) s(P18,P24) s(P59,P24) s(P24,P25) s(P18,P25) s(P48,P25) s(P54,P25) s(P13,P26) s(P19,P26) s(P21,P27) s(P23,P27) s(P21,P28) s(P27,P28) s(P51,P28) s(P56,P28) s(P26,P29) s(P19,P29) s(P26,P30) s(P29,P30) s(P58,P30) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P32,P35) s(P34,P35) s(P33,P36) s(P34,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P50,P42) s(P52,P42) s(P36,P43) s(P37,P43) s(P41,P44) s(P43,P44) s(P35,P45) s(P35,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P36,P49) s(P45,P49) s(P44,P50) s(P52,P50) s(P53,P50) s(P51,P52) s(P51,P53) s(P52,P53) s(P47,P54) s(P48,P54) s(P59,P54) s(P43,P55) s(P49,P55) s(P51,P56) s(P53,P56) s(P49,P57) s(P55,P57) s(P55,P58) s(P57,P58) s(P57,P59) s(P29,P59) s(P30,P60) s(P58,P60) s(P14,P61) s(P60,P61) s(P27,P61) s(P62,P61) s(P60,P62) s(P44,P62) s(P56,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P24,P59) abstand(P24,P59,A0) print(abs(P24,P59):,6.83,16.71) print(A0,7.97,16.71) color(red) s(P30,P58) abstand(P30,P58,A1) print(abs(P30,P58):,6.83,16.448) print(A1,7.97,16.448) color(red) s(P61,P27) abstand(P61,P27,A2) print(abs(P61,P27):,6.83,16.186) print(A2,7.97,16.186) color(red) s(P62,P56) abstand(P62,P56,A3) print(abs(P62,P56):,6.83,15.924) print(A3,7.97,15.924) color(red) s(P61,P62) abstand(P61,P62,A4) print(abs(P61,P62):,6.83,15.662) print(A4,7.97,15.662) print(min=0.9999999999999178,6.83,15.4) print(max=1.3434011015040672,6.83,15.138) \geooff \geoprint() 122er Versuch. 3 Kanten falsch. \geo ebene(438.06,501.14) x(6.84,14.5) y(7.92,16.68) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-180.71932818960266,27.594541063952754]; #P[2]=[-159.9796386968027,-25.744797680233773]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,5]),D); #N(24,17,18); N(25,24,18); #N(26,13,19); N(27,21,23); N(28,21,27); N(29,26,19); N(30,26,29); #A(25,28,ab(25,28,[1,30],"gespiegelt")); #A(30,58); N(59,44,56); N(60,30,58); N(61,14,59); # #R(29,24); R(30,58); R(59,60); R(61,27); R(61,60); #A(29,24); A(57,54); A(59,60); A(60,61); A(27,61); # # #//Ende der Eingabe, weiter mit fedgeo: p(6.842201751484888,10.482173070878767,P1) p(7.204596608809722,9.550148410591007,P2) p(7.830556212910066,10.33000389337903,P3) p(8.1929510702349,9.397979233091272,P4) p(7.5669914661345565,8.618123750303248,P5) p(8.818910674335244,10.177834715879294,P6) p(7.81115973862763,10.729398512838701,P7) p(7.112577231857122,11.444928023924184,P8) p(8.081535218999864,11.692153465884118,P9) p(7.382952712229354,12.407682976969602,P10) p(8.351910699372098,12.654908418929535,P11) p(7.653328192601588,13.370437930015019,P12) p(8.708041119878269,11.17166968301142,P13) p(9.158858623622738,12.064285825772465,P14) p(8.254495315208201,9.344304483667143,P15) p(8.539634353503326,8.385818318487837,P16) p(9.227138202576969,9.11199905185173,P17) p(9.512277240872093,8.153512886672427,P18) p(9.252199344093638,9.276579519689559,P19) p(8.460276116852228,12.779815336857947,P20) p(9.483264456298357,14.177490140722297,P21) p(8.568296324449973,13.773964035368659,P22) p(9.375244248700612,13.183341442211587,P23) p(10.199781089945738,8.87969362003632,P24) p(10.484920128240862,7.921207454857015,P25) p(9.141329789636664,10.270414486821682,P26) p(10.290212380548997,13.586867547565227,P27) p(10.398232588146742,14.581016246075936,P28) p(10.057450895570843,9.869512853921623,P29) p(9.94658134111387,10.863347821053749,P30) p(14.05974591306567,10.576120385058879,P31) p(13.721733162549,9.634978854528981,P32) p(13.075687063811877,10.398277248544417,P33) p(12.737674313295209,9.457135718014522,P34) p(13.383720412032332,8.693837323999086,P35) p(12.091628214558085,10.220434112029958,P36) p(13.08468127107049,10.798041415902764,P37) p(13.764402842412915,11.531511650780626,P38) p(12.789338200417737,11.753432681624512,P39) p(13.469059771760161,12.486902916502373,P40) p(12.493995129764983,12.708823947346259,P41) p(13.17371670110741,13.44229418222412,P42) p(12.176592041827368,11.21681814846157,P43) p(11.702693699223033,12.097397708113544,P44) p(12.677547999933859,9.401877241229057,P45) p(12.417453650768508,8.436294034285062,P46) p(11.711281238670036,9.144333951515035,P47) p(11.451186889504685,8.178750744571039,P48) p(11.68194478354065,9.30820635190106,P49) p(12.382415270565458,12.830867942991404,P50) p(11.323393959133634,14.201442224791997,P51) p(12.248555330120519,13.821868203508057,P52) p(11.457253899578571,13.210441964275342,P53) p(10.745014477406212,8.886790661801012,P54) p(11.766908610809933,10.304590388332674,P55) p(10.532092528591665,13.590015985559281,P56) p(10.861532809700236,9.87997920293482,P57) p(10.946496636969519,10.876363239366432,P58) p(10.868007607721541,12.648123709546166,P59) p(10.435267306142027,11.735807578053748,P60) p(9.87458885270098,12.762662686202138,P61) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P21,P22) s(P21,P23) s(P22,P23) s(P17,P24) s(P18,P24) s(P24,P25) s(P18,P25) s(P48,P25) s(P54,P25) s(P13,P26) s(P19,P26) s(P21,P27) s(P23,P27) s(P61,P27) s(P21,P28) s(P27,P28) s(P51,P28) s(P56,P28) s(P26,P29) s(P19,P29) s(P24,P29) s(P26,P30) s(P29,P30) s(P58,P30) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P32,P35) s(P34,P35) s(P33,P36) s(P34,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P50,P42) s(P52,P42) s(P36,P43) s(P37,P43) s(P41,P44) s(P43,P44) s(P35,P45) s(P35,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P36,P49) s(P45,P49) s(P44,P50) s(P52,P50) s(P53,P50) s(P51,P52) s(P51,P53) s(P52,P53) s(P47,P54) s(P48,P54) s(P43,P55) s(P49,P55) s(P51,P56) s(P53,P56) s(P49,P57) s(P55,P57) s(P54,P57) s(P55,P58) s(P57,P58) s(P44,P59) s(P56,P59) s(P60,P59) s(P30,P60) s(P58,P60) s(P61,P60) s(P14,P61) s(P59,P61) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P29,P24) abstand(P29,P24,A0) print(abs(P29,P24):,6.84,16.678) print(A0,7.98,16.678) color(red) s(P30,P58) abstand(P30,P58,A1) print(abs(P30,P58):,6.84,16.416) print(A1,7.98,16.416) color(red) s(P59,P60) abstand(P59,P60,A2) print(abs(P59,P60):,6.84,16.154) print(A2,7.98,16.154) color(red) s(P61,P27) abstand(P61,P27,A3) print(abs(P61,P27):,6.84,15.892) print(A3,7.98,15.892) color(red) s(P61,P60) abstand(P61,P60,A4) print(abs(P61,P60):,6.84,15.629) print(A4,7.98,15.629) print(min=0.9230691038028407,6.84,15.367) print(max=1.1699537346764985,6.84,15.105) \geooff \geoprint() Ob man bei P12 noch einen Winkel einbauen könnte? EDIT: Scheint nichts zu nützen. Aber der Winkel müsste wohl auch unten bei P20 sein. \geo ebene(479.36,539.25) x(7.67,15.29) y(8.37,16.93) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-146.3756349015957,58.46539820442564]; #P[2]=[-123.56197645951568,-0.20787441417995467]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #M(21,12,11,orange_angle); #N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18); #N(28,27,18); N(29,21,11); N(30,27,28); N(31,25,29); #A(20,26,ab(20,26,[1,31],"gespiegelt")); #N(61,30,59); #R(19,28); R(13,29); R(30,59); R(31,60); R(31,61); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.674823726292309,10.92872257619373,P1) p(8.037218583617141,9.99669791590597,P2) p(8.663178187717486,10.776553398693993,P3) p(9.02557304504232,9.844528738406233,P4) p(8.399613440941975,9.06467325561821,P5) p(9.651532649142665,10.624384221194255,P6) p(8.643781710688577,11.175948028917999,P7) p(7.945199195969117,11.8914775322428,P8) p(8.914157180365386,12.138702984967068,P9) p(8.215574665645924,12.854232488291867,P10) p(9.184532650042193,13.101457941016138,P11) p(8.485950135322732,13.816987444340938,P12) p(9.540663097113768,11.61821918859725,P13) p(9.08711729126268,9.790853987801464,P14) p(9.372256327911808,8.832367822132491,P15) p(10.059760178232514,9.558548554315745,P16) p(10.344899214881643,8.600062388646773,P17) p(10.084821320273035,9.723129025664113,P18) p(11.032403065202347,9.326243120830027,P19) p(11.317542101851476,8.367756955161054,P20) p(9.292898067749125,13.226364862354124,P21) p(9.400918261585266,14.220513562360116,P22) p(10.20786619401166,13.629890980373304,P23) p(10.315886387847799,14.624039680379296,P24) p(11.122834320274192,14.033417098392484,P25) p(11.230854514110334,15.027565798398474,P26) p(9.973951768244138,10.716963993067107,P27) p(10.890072873198859,10.316062357928834,P28) p(9.991480582468586,12.510835359029326,P29) p(10.779203321169962,11.309897325331828,P30) p(10.811549225972323,13.083100524788994,P31) p(14.892367847906957,11.022669940757108,P32) p(14.554355110663302,10.081528405460185,P33) p(13.908309001161307,10.844826790364369,P34) p(13.570296263917648,9.903685255067446,P35) p(14.216342373419643,9.140386870163262,P36) p(12.924250154415653,10.66698363997163,P37) p(13.917303205247368,11.244590968681742,P38) p(14.597024774393851,11.978061205594626,P39) p(13.621960131734257,12.199982233519258,P40) p(14.301681700880739,12.933452470432144,P41) p(13.326617058221148,13.155373498356774,P42) p(14.006338627367633,13.888843735269658,P43) p(13.009213965198526,11.663367677809074,P44) p(13.510169950119707,9.848426776221316,P45) p(13.250075616230255,8.882843565162526,P46) p(12.543903192930319,9.59088347122058,P47) p(12.283808859040866,8.62530026016179,P48) p(12.514566734874776,9.754755874688586,P49) p(11.57763643574093,9.333340166219843,P50) p(13.215037196984953,13.277417495830813,P51) p(13.081177256281862,14.268417756312598,P52) p(12.289875825899186,13.65699151687375,P53) p(12.156015885196092,14.647991777355536,P54) p(11.364714454813408,14.036565537916688,P55) p(12.59953054565765,10.751139912526032,P56) p(11.69415475157367,10.326528712147613,P57) p(12.535315627838475,12.543947258917926,P58) p(11.779118562356548,11.322912749985058,P59) p(11.700629538413557,13.094673263497844,P60) p(11.267889252552209,12.182357101177724,P61) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P7,P13) s(P6,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P48,P20) s(P50,P20) s(P12,P21) s(P12,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P24,P26) s(P25,P26) s(P54,P26) s(P55,P26) s(P13,P27) s(P18,P27) s(P27,P28) s(P18,P28) s(P21,P29) s(P11,P29) s(P27,P30) s(P28,P30) s(P25,P31) s(P29,P31) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P33,P36) s(P35,P36) s(P34,P37) s(P35,P37) s(P32,P38) s(P32,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P37,P44) s(P38,P44) s(P36,P45) s(P36,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P37,P49) s(P45,P49) s(P47,P50) s(P48,P50) s(P43,P51) s(P43,P52) s(P51,P52) s(P51,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P53,P55) s(P54,P55) s(P44,P56) s(P49,P56) s(P49,P57) s(P56,P57) s(P42,P58) s(P51,P58) s(P56,P59) s(P57,P59) s(P55,P60) s(P58,P60) s(P30,P61) s(P59,P61) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12) pen(2) color(red) s(P19,P28) abstand(P19,P28,A0) print(abs(P19,P28):,7.67,16.934) print(A0,8.71,16.934) color(red) s(P13,P29) abstand(P13,P29,A1) print(abs(P13,P29):,7.67,16.695) print(A1,8.71,16.695) color(red) s(P30,P59) abstand(P30,P59,A2) print(abs(P30,P59):,7.67,16.457) print(A2,8.71,16.457) color(red) s(P31,P60) abstand(P31,P60,A3) print(abs(P31,P60):,7.67,16.219) print(A3,8.71,16.219) color(red) s(P31,P61) abstand(P31,P61,A4) print(abs(P31,P61):,7.67,15.981) print(A4,8.71,15.981) print(min=0.9999999999999891,7.67,15.742) print(max=1.000000000000007,7.67,15.504) \geooff \geoprint() Vielleicht können wir eine/die 4/4-Lücke/n zwischen 57 und 63 Knoten füllen. Mit dieser Art Hüllen ist eine Menge möglich.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1174, vom Themenstarter, eingetragen 2018-04-27

4 Stunden Arbeit und es will nicht - trotz dreier Winkel, die wirklich sehr schwer zu handhaben sind. Immerhin hat dieser 122er nur 2 falsche Kanten. \geo ebene(516.44,460.39) x(7.09,15.29) y(8.78,16.1) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-177.10018280213365,182.9441123401792]; #P[2]=[-180.12343870332464,120.06425980341669]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #M(21,12,11,orange_angle); #N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18); #N(28,13,27); #A(20,26,ab(26,20,[1,28])); #R(28,11); A(28,11); A(39,54); #N(55,18,19); N(56,46,47); R(52,55); A(52,55); N(57,21,28); A(25,56); #N(58,48,54); #N(59,57,27); N(60,58,53); N(61,55,58); N(62,56,57); R(59,61); A(59,61); #A(60,62); R(59,62); A(59,62); A(61,60); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.186764427032877,12.906066366262865,P1) p(7.1387400212257095,11.907220203709858,P2) p(8.0277783753728,12.365052929555702,P3) p(7.979753969565631,11.366206767002694,P4) p(7.090715615418542,10.90837404115685,P5) p(8.86879232371272,11.824039492848538,P6) p(8.057014911775397,12.41345689233305,P7) p(8.048501987972244,13.413420656740703,P8) p(8.918752472714765,12.920811182810889,P9) p(8.910239548911612,13.920774947218542,P10) p(9.780490033654134,13.428165473288725,P11) p(9.771977109850981,14.428129237696378,P12) p(8.971186919959804,12.818783352673465,P13) p(8.056153805026218,11.169006161293746,P14) p(7.799148747303129,10.202596103241394,P15) p(8.764586936910804,10.46322822337829,P16) p(8.507581879187716,9.496818165325935,P17) p(8.997797758015833,10.832395606203606,P18) p(9.473020068795392,9.75745028546283,P19) p(9.216015011072303,8.791040227410479,P20) p(10.269562171057334,13.560714050566093,P21) p(10.771973228137417,14.425342947679573,P22) p(11.269558289343772,13.557927760549287,P23) p(11.771969346423855,14.422556657662767,P24) p(12.26955440763021,13.55514147053248,P25) p(12.771965464710293,14.41977036764596,P26) p(9.100192354262918,11.827139466028534,P27) p(9.894478434453408,12.434683392683741,P28) p(14.801216048749719,10.304744228793572,P29) p(14.849240454556885,11.30359039134658,P30) p(13.960202100409798,10.845757665500736,P31) p(14.008226506216964,11.844603828053744,P32) p(14.897264860364054,12.302436553899586,P33) p(13.119188152069874,11.386771102207902,P34) p(13.930965564007197,10.797353702723388,P35) p(13.93947848781035,9.797389938315735,P36) p(13.069228003067831,10.28999941224555,P37) p(13.077740926870984,9.290035647837897,P38) p(12.207490442128462,9.782645121767711,P39) p(12.216003365931616,8.782681357360058,P40) p(13.01679355582279,10.392027242382973,P41) p(13.93182667075638,12.04180443376269,P42) p(14.188831728479464,13.008214491815044,P43) p(13.223393538871791,12.74758237167815,P44) p(13.480398596594886,13.713992429730498,P45) p(12.990182717766764,12.37841498885283,P46) p(12.5149604069872,13.45336030959361,P47) p(11.718418304725262,9.650096544490346,P48) p(11.216007247645177,8.785467647376866,P49) p(10.718422186438824,9.652882834507151,P50) p(10.21601112935874,8.788253937393671,P51) p(9.718426068152388,9.655669124523957,P52) p(12.887788121519678,11.383671129027903,P53) p(12.09350204132919,10.776127202372697,P54) p(9.975431125875492,10.622079182576302,P55) p(12.012549349907104,12.588731412480136,P56) p(10.84565523584573,12.743329942142939,P57) p(11.142325239936866,10.4674806529135,P58) p(10.051369155655241,12.135786015487733,P59) p(11.936611320127353,11.075024579568709,P60) p(10.665061481327914,11.346240748001149,P61) p(11.322918994454682,11.86456984705529,P62) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P7,P13) s(P6,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20) s(P12,P21) s(P12,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P56,P25) s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26) s(P13,P27) s(P18,P27) s(P13,P28) s(P27,P28) s(P11,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P54,P39) s(P38,P40) s(P39,P40) s(P34,P41) s(P35,P41) s(P33,P42) s(P33,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P34,P46) s(P42,P46) s(P44,P47) s(P45,P47) s(P40,P48) s(P40,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P55,P52) s(P41,P53) s(P46,P53) s(P41,P54) s(P53,P54) s(P18,P55) s(P19,P55) s(P46,P56) s(P47,P56) s(P21,P57) s(P28,P57) s(P48,P58) s(P54,P58) s(P57,P59) s(P27,P59) s(P61,P59) s(P62,P59) s(P58,P60) s(P53,P60) s(P62,P60) s(P55,P61) s(P58,P61) s(P60,P61) s(P56,P62) s(P57,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12) pen(2) color(red) s(P28,P11) abstand(P28,P11,A0) print(abs(P28,P11):,7.09,16.096) print(A0,8.12,16.096) color(red) s(P52,P55) abstand(P52,P55,A1) print(abs(P52,P55):,7.09,15.858) print(A1,8.12,15.858) color(red) s(P59,P61) abstand(P59,P61,A2) print(abs(P59,P61):,7.09,15.62) print(A2,8.12,15.62) color(red) s(P59,P62) abstand(P59,P62,A3) print(abs(P59,P62):,7.09,15.381) print(A3,8.12,15.381) print(min=0.9999999999999909,7.09,15.143) print(max=1.3001527612438701,7.09,14.905) \geooff \geoprint() Dieser 120er will auch nicht. \geo ebene(471.59,528.8) x(7.09,14.58) y(9.5,17.9) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-177.10018280213416,232.9441123401795]; #P[2]=[-180.12343870332526,170.06425980341646]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #M(21,12,11,orange_angle); #N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18); #N(28,13,27); #A(20,26,ab(26,20,[1,28])); #N(55,18,19); N(56,46,47); #N(57,21,28); A(25,56); N(58,48,54); N(59,28,27); N(60,54,53); # #R(52,55); R(59,54); R(55,59); R(58,41);R(39,58); # #A(52,55); A(11,57); A(39,58); A(13,57); A(41,58); A(56,60); A(55,59); A(59,54); #A(28,60); #Z(54,41); Z(13,28); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.186764427032893,13.700316131693693,P1) p(7.138740021225723,12.701469969140687,P2) p(8.027778375372813,13.159302694986529,P3) p(7.9797539695656425,12.160456532433521,P4) p(7.090715615418554,11.70262380658768,P5) p(8.868792323712732,12.618289258279363,P6) p(8.17088993937606,13.52284225768601,P7) p(7.83252406660317,14.463856888891414,P8) p(8.81664957894634,14.286383014883729,P9) p(8.478283706173448,15.22739764608913,P10) p(9.462409218516617,15.049923772081446,P11) p(9.124043345743726,15.990938403286847,P12) p(9.169683538059953,13.571947728135662,P13) p(8.063542654581505,11.934156853631606,P14) p(7.7776426355556865,10.975897400706128,P15) p(8.750469674718639,11.207430447750053,P16) p(8.46456965569282,10.249170994824574,P17) p(9.015898764147524,11.629168590624197,P18) p(9.43739669485577,10.480704041868501,P19) p(9.151496675829952,9.522444588943022,P20) p(9.616730370547346,15.12073182115238,P21) p(10.124007864814418,15.982514591814525,P22) p(10.616694889618039,15.112308009680053,P23) p(11.123972383885109,15.974090780342198,P24) p(11.61665940868873,15.103884198207728,P25) p(12.1239369029558,15.965666968869872,P26) p(9.316789978494743,12.582827060480493,P27) p(10.099840383874948,13.20478530878491,P28) p(14.08866915175286,11.787795426119198,P29) p(14.13669355756003,12.786641588672206,P30) p(13.24765520341294,12.328808862826365,P31) p(13.295679609220112,13.32765502537937,P32) p(14.1847179633672,13.785487751225212,P33) p(12.40664125507302,12.869822299533531,P34) p(13.10454363940969,11.965269300126884,P35) p(13.442909512182583,11.02425466892148,P36) p(12.458783999839413,11.201728542929166,P37) p(12.797149872612305,10.260713911723762,P38) p(11.813024360269136,10.438187785731447,P39) p(12.151390233042026,9.497173154526045,P40) p(12.105750040725802,11.916163829677233,P41) p(13.211890924204246,13.553954704181288,P42) p(13.497790943230067,14.512214157106765,P43) p(12.524963904067118,14.28068111006284,P44) p(12.810863923092937,15.238940562988319,P45) p(12.259534814638233,13.858942967188696,P46) p(11.838036883930043,15.007407515944365,P47) p(11.658703208238405,10.367379736660515,P48) p(11.151425713971335,9.50559696599837,P49) p(10.658738689167714,10.375803548132842,P50) p(10.151461194900644,9.514020777470696,P51) p(9.658774170097024,10.384227359605166,P52) p(11.95864360029101,12.905284497332401,P53) p(11.175593194910805,12.283326249027983,P54) p(9.969312100527004,11.327501539036275,P55) p(11.306121478258756,14.160610018776625,P56) p(10.008309988285523,14.20058759171222,P57) p(11.267123590500224,11.287523966100673,P58) p(10.24694682430974,12.215664641129742,P59) p(11.028486754476013,13.272446916683151,P60) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P57,P11) s(P10,P12) s(P11,P12) s(P7,P13) s(P6,P13) s(P57,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20) s(P12,P21) s(P12,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P56,P25) s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26) s(P13,P27) s(P18,P27) s(P27,P28) s(P60,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P58,P39) s(P38,P40) s(P39,P40) s(P34,P41) s(P35,P41) s(P58,P41) s(P33,P42) s(P33,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P34,P46) s(P42,P46) s(P44,P47) s(P45,P47) s(P40,P48) s(P40,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P55,P52) s(P41,P53) s(P46,P53) s(P53,P54) s(P18,P55) s(P19,P55) s(P59,P55) s(P46,P56) s(P47,P56) s(P60,P56) s(P21,P57) s(P28,P57) s(P48,P58) s(P54,P58) s(P28,P59) s(P27,P59) s(P54,P59) s(P54,P60) s(P53,P60) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12) pen(2) color(red) s(P52,P55) abstand(P52,P55,A0) print(abs(P52,P55):,7.09,17.897) print(A0,8.12,17.897) color(red) s(P59,P54) abstand(P59,P54,A1) print(abs(P59,P54):,7.09,17.659) print(A1,8.12,17.659) color(red) s(P55,P59) abstand(P55,P59,A2) print(abs(P55,P59):,7.09,17.421) print(A2,8.12,17.421) color(red) s(P58,P41) abstand(P58,P41,A3) print(abs(P58,P41):,7.09,17.182) print(A3,8.12,17.182) color(red) s(P39,P58) abstand(P39,P58,A4) print(abs(P39,P58):,7.09,16.944) print(A4,8.12,16.944) print(min=0.9305453969421396,7.09,16.706) print(max=1.0480851115703853,7.09,16.467) \geooff \geoprint() Fast 128er mit 2 falschen Kanten. \geo ebene(494.59,486.02) x(7.16,15.02) y(8.68,16.4) form(.) #//Eingabe war: # #4/4 fast mit 128 # # # # # #P[1]=[-178.81009046250912,180.12656606819127]; #P[2]=[-178.53832588563273,117.17466319541211]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #M(21,12,11,orange_angle); #N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18); #N(28,13,27); #A(20,26,ab(26,20,[1,28])); #N(55,19,52); N(56,47,25); N(57,21,28); N(58,48,54); N(59,57,27); N(60,58,53); #N(61,55,58); N(62,56,57); N(63,18,55); N(64,46,56); # #R(63,61); A(63,61); A(62,64); #R(59,63); A(59,63); A(64,60); #R(59,62); A(59,62); A(61,60); #R(28,11); A(28,11); A(39,54); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.159602551869638,12.861309656950532,P1) p(7.163919530898367,11.861318975147913,P2) p(8.02777837537279,12.365052929555707,P3) p(8.03209535440152,11.36506224775309,P4) p(7.168236509927097,10.861328293345295,P5) p(8.895954198875945,11.868796202160883,P6) p(8.090464580858818,12.495938772798354,P7) p(7.941454033843197,13.4847743793974,P8) p(8.872316062832377,13.119403495245221,P9) p(8.723305515816755,14.108239101844267,P10) p(9.654167544805935,13.742868217692088,P11) p(9.505156997790314,14.731703824291134,P12) p(9.021493224775114,12.860884884172874,P13) p(8.13604864494893,11.11300203314443,P14) p(7.870098429569497,10.149015268225101,P15) p(8.83791056459133,10.400689008024234,P16) p(8.571960349211897,9.436702243104905,P17) p(9.111384727756851,10.892277033262447,P18) p(9.53977248423373,9.688375982904038,P19) p(9.273822268854298,8.724389217984708,P20) p(9.992050086140502,13.858242250713444,P21) p(10.505043453913219,14.716634820940612,P22) p(10.991936542263407,13.843173247362923,P23) p(11.504929910036124,14.701565817590092,P24) p(11.991822998386311,13.828104244012401,P25) p(12.504816366159028,14.68649681423957,P26) p(9.236923753656018,11.884365715274438,P27) p(9.97489889676408,12.559193610485234,P28) p(14.619036083143689,10.549576375273746,P29) p(14.614719104114961,11.549567057076363,P30) p(13.750860259640536,11.04583310266857,P31) p(13.746543280611807,12.04582378447119,P32) p(14.610402125086228,12.549557738878981,P33) p(12.882684436137383,11.542089830063395,P34) p(13.688174054154507,10.914947259425926,P35) p(13.837184601170131,9.926111652826878,P36) p(12.90632257218095,10.291482536979057,P37) p(13.055333119196572,9.302646930380012,P38) p(12.12447109020739,9.668017814532192,P39) p(12.273481637223014,8.679182207933144,P40) p(12.757145410238213,10.550001148051404,P41) p(13.642589990064398,12.297883999079849,P42) p(13.908540205443831,13.261870763999177,P43) p(12.940728070421994,13.010197024200048,P44) p(13.20667828580143,13.974183789119373,P45) p(12.667253907256478,12.518608998961831,P46) p(12.238866150779598,13.72251004932024,P47) p(11.786588548872825,9.552643781510834,P48) p(11.273595181100108,8.694251211283666,P49) p(10.78670209274992,9.567712784861357,P50) p(10.273708724977203,8.709320214634188,P51) p(9.786815636627017,9.582781788211877,P52) p(12.54171488135731,11.52652031694984,P53) p(11.803739738249247,10.851692421739044,P54) p(10.05276585200645,10.546768553131205,P55) p(11.72587278300688,12.864117479093071,P56) p(10.74370068923658,13.198680751787602,P57) p(11.034937945776747,10.212205280436677,P58) p(10.005725546128522,12.523852856576799,P59) p(11.772913088884811,10.887033175647474,P60) p(10.819507416895844,11.188724449335114,P61) p(10.959131218117484,12.222161582889164,P62) p(9.880186520229353,11.531764174564808,P63) p(11.898452114783975,11.879121857659468,P64) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P7,P13) s(P6,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20) s(P12,P21) s(P12,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26) s(P13,P27) s(P18,P27) s(P13,P28) s(P27,P28) s(P11,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P54,P39) s(P38,P40) s(P39,P40) s(P34,P41) s(P35,P41) s(P33,P42) s(P33,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P34,P46) s(P42,P46) s(P44,P47) s(P45,P47) s(P40,P48) s(P40,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P41,P53) s(P46,P53) s(P41,P54) s(P53,P54) s(P19,P55) s(P52,P55) s(P47,P56) s(P25,P56) s(P21,P57) s(P28,P57) s(P48,P58) s(P54,P58) s(P57,P59) s(P27,P59) s(P63,P59) s(P62,P59) s(P58,P60) s(P53,P60) s(P55,P61) s(P58,P61) s(P60,P61) s(P56,P62) s(P57,P62) s(P64,P62) s(P18,P63) s(P55,P63) s(P61,P63) s(P46,P64) s(P56,P64) s(P60,P64) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12) pen(2) color(red) s(P63,P61) abstand(P63,P61,A0) print(abs(P63,P61):,7.16,16.4) print(A0,8.19,16.4) color(red) s(P59,P63) abstand(P59,P63,A1) print(abs(P59,P63):,7.16,16.161) print(A1,8.19,16.161) color(red) s(P59,P62) abstand(P59,P62,A2) print(abs(P59,P62):,7.16,15.923) print(A2,8.19,15.923) color(red) s(P28,P11) abstand(P28,P11,A3) print(abs(P28,P11):,7.16,15.685) print(A3,8.19,15.685) print(min=0.999999999999995,7.16,15.447) print(max=1.2263580944712662,7.16,15.208) \geooff \geoprint() Fast 126er, wenn sich die Knoten in der Mitte treffen würden. \geo ebene(461.08,493.59) x(7.09,14.41) y(8.52,16.36) form(.) #//Eingabe war: # #4/4 fast mit 128 # # # # # #P[1]=[-183.21875070412142,-12.900224351428024]; #P[2]=[-134.82010842189513,-53.15674378028819]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #M(21,12,11,orange_angle); #N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18); #N(28,13,27); #A(20,26,ab(26,20,[1,28])); #N(55,19,52); N(56,47,25); N(57,21,28); N(58,48,54); N(59,57,27); N(60,58,53); #N(61,55,59); N(62,56,60); #N(63,61,60); N(64,62,59); #R(39,54); R(55,58); R(18,61); A(39,54); A(55,58); A(18,61); A(11,28); A(56,57); #A(62,46); #11 # # #//Ende der Eingabe, weiter mit fedgeo: p(7.089571004614351,9.795079996697458,P1) p(7.858383210210951,9.155605374428763,P2) p(8.027778375372801,10.141153586349311,P3) p(8.7965905809694,9.501678964080615,P4) p(8.627195415807552,8.516130752160066,P5) p(8.965985746131249,10.487227176001163,P6) p(7.998316058265154,10.212431679891859,P7) p(7.182506371481207,10.790752140319706,P8) p(8.091251425132011,11.208103823514106,P9) p(7.275441738348064,11.786424283941955,P10) p(8.184186791998867,12.203775967136353,P11) p(7.36837710521492,12.782096427564202,P12) p(8.246043725605807,11.181261387752821,P13) p(9.123393669922333,9.384339996877861,P14) p(9.627185804591052,8.520515081142078,P15) p(10.123384058705833,9.388724325859872,P16) p(10.627176193374552,8.524899410124089,P17) p(9.866849438241433,10.053125104781031,P18) p(11.123374447489335,9.393108654841884,P19) p(11.627166582158054,8.5292837391061,P20) p(8.33558371920724,12.528105550071498,P21) p(8.071942964449262,13.492726487243527,P22) p(9.039149578441581,13.238735609750822,P23) p(8.775508823683605,14.203356546922851,P24) p(9.742715437675923,13.949365669430147,P25) p(9.479074682917949,14.913986606602176,P26) p(9.14690741771599,10.74715931653269,P27) p(9.072418993172974,11.744381194857219,P28) p(14.016670260461652,13.648190349010818,P29) p(13.247858054865048,14.287664971279515,P30) p(13.0784628897032,13.302116759358967,P31) p(12.3096506841066,13.941591381627662,P32) p(12.479045849268447,14.927139593548208,P33) p(12.140255518944752,12.956043169707113,P34) p(13.107925206810847,13.230838665816417,P35) p(13.923734893594792,12.65251820538857,P36) p(13.01498983994399,12.23516652219417,P37) p(13.830799526727937,11.656846061766323,P38) p(12.922054473077136,11.239494378571923,P39) p(13.737864159861081,10.661173918144076,P40) p(12.860197539470194,12.262008957955455,P41) p(11.98284759515367,14.058930348830415,P42) p(11.47905546048495,14.922755264566199,P43) p(10.98285720637017,14.054546019848404,P44) p(10.47906507170145,14.91837093558419,P45) p(11.239391826834568,13.390145240927243,P46) p(9.982866817586697,14.050161690866402,P47) p(12.770657545868763,10.91516479563678,P48) p(13.03429830062674,9.95054385846475,P49) p(12.06709168663442,10.204534735957454,P50) p(12.330732441392396,9.239913798785425,P51) p(11.363525827400082,9.493904676278131,P52) p(11.95933384736001,12.696111029175587,P53) p(12.033822271903027,11.698889150851059,P54) p(10.859733692731364,10.357729592013916,P55) p(10.246507572344644,13.085540753694364,P56) p(9.318209354553112,12.713704205134299,P57) p(11.788031910522891,10.729566140573978,P58) p(9.392697779096128,11.716482326809771,P59) p(11.713543485979875,11.726788018898505,P60) p(10.112639799621649,11.022448115058195,P61) p(10.993601465454399,12.420822230650128,P62) p(10.717765128697677,11.818578340656137,P63) p(10.388476136378332,11.624692005052216,P64) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P28,P11) s(P10,P12) s(P11,P12) s(P7,P13) s(P6,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P61,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20) s(P12,P21) s(P12,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26) s(P13,P27) s(P18,P27) s(P13,P28) s(P27,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P54,P39) s(P38,P40) s(P39,P40) s(P34,P41) s(P35,P41) s(P33,P42) s(P33,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P34,P46) s(P42,P46) s(P44,P47) s(P45,P47) s(P40,P48) s(P40,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P41,P53) s(P46,P53) s(P41,P54) s(P53,P54) s(P19,P55) s(P52,P55) s(P58,P55) s(P47,P56) s(P25,P56) s(P57,P56) s(P21,P57) s(P28,P57) s(P48,P58) s(P54,P58) s(P57,P59) s(P27,P59) s(P58,P60) s(P53,P60) s(P55,P61) s(P59,P61) s(P56,P62) s(P60,P62) s(P46,P62) s(P61,P63) s(P60,P63) s(P62,P64) s(P59,P64) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12) pen(2) color(red) s(P39,P54) abstand(P39,P54,A0) print(abs(P39,P54):,7.09,16.357) print(A0,8.12,16.357) color(red) s(P55,P58) abstand(P55,P58,A1) print(abs(P55,P58):,7.09,16.119) print(A1,8.12,16.119) color(red) s(P18,P61) abstand(P18,P61,A2) print(abs(P18,P61):,7.09,15.88) print(A2,8.12,15.88) print(min=0.9999999999999709,7.09,15.642) print(max=1.000000000000099,7.09,15.404) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1175, vom Themenstarter, eingetragen 2018-04-29

Info Ich habe den neuen 4/11 schon im MGC integriert. Update der Paper und MathMagic kommt auch noch. Ist der 4/11 Kern gleich geblieben? Oder muss ich den auch noch ändern? Ich habe in einer 2-tägigen Sitzung unseren 4-reg. Beweis für Geombinatorics umgeschrieben. Mit der Einreichung warte ich aber noch etwas, da gerade so viele neue 4/4 Ideen auftauchen.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1176, eingetragen 2018-04-29

Der 4/11 Kern ist gleich geblieben, drum ist es auch weiterhin ne Team- Autoren-Schaft von uns dreien!


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1177, vom Themenstarter, eingetragen 2018-04-29

OK, das ist schön. Ich habe diese Definition von (2, r)-regulären Graphen gefunden. hier Das Paper ist von 2006. Wenn ich mich nicht irre, dann ist unsere Definition ja eine andere. Deshalb sollten wir doch (2; n)-regulär nehmen, also mit Semikolon. Im Thread haben wir ja sowieso unsere eigene Sprache.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1178, vom Themenstarter, eingetragen 2018-04-29

Fast 122er. \geo ebene(504.92,485.2) x(7.33,15.35) y(8.23,15.93) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-155.2451595323765,135.66830761043124]; #P[2]=[-161.5551493773537,73.03285471476363]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #M(21,20,19,orange_angle); #N(22,21,20); N(23,21,22); N(24,23,22); N(25,23,24); N(26,25,24); N(27,13,18); #N(28,27,18); #A(12,26,ab(26,12,[1,28])); #N(55,52,11); N(56,25,39); N(57,21,56); N(58,48,55); N(59,57,56); N(60,58,55); #N(61,27,59); N(62,53,60); #R(19,28); A(46,54); #R(28,57); A(58,54); #R(61,60); A(59,62); #R(13,61); A(40,62); # #A(19,28); A(28,57); A(13,61); A(61,60); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.533931369142696,12.155090429919714,P1) p(7.433697210057812,11.16012655451893,P2) p(8.345478281545146,11.570803164124841,P3) p(8.245244122460262,10.575839288724058,P4) p(7.333463050972927,10.165162679118147,P5) p(9.157025193947598,10.98651589832997,P6) p(8.498502809816644,11.89126864189571,P7) p(8.24469345998029,12.858522907296306,P8) p(9.20926490065424,12.594701119272303,P9) p(8.955455550817884,13.561955384672899,P10) p(9.920026991491834,13.298133596648896,P11) p(9.666217641655479,14.26538786204949,P12) p(9.49787730136783,11.92663282768886,P13) p(8.274455197435168,10.5035910767097,P14) p(8.097046713880392,9.519453774315977,P15) p(9.038038860342633,9.85788217190753,P16) p(8.860630376787856,8.873744869513805,P17) p(9.13060594784247,9.986864947530023,P18) p(9.801622523250098,9.212173267105358,P19) p(9.624214039695323,8.228035964711635,P20) p(10.124838054151661,9.093700793701249,P21) p(10.62421377999121,8.227315264942703,P22) p(11.124837794447549,9.092980093932319,P23) p(11.624213520287098,8.226594565173773,P24) p(12.124837534743437,9.092259394163388,P25) p(12.624213260582986,8.225873865404843,P26) p(9.471458055262701,10.926981876888913,P27) p(10.115197144905204,10.161736828250087,P28) p(14.75649953309577,10.336171297534621,P29) p(14.856733692180656,11.331135172935408,P30) p(13.944952620693318,10.920458563329493,P31) p(14.045186779778202,11.915422438730278,P32) p(14.956967851265539,12.32609904833619,P33) p(13.133405708290868,11.504745829124365,P34) p(13.791928092421822,10.599993085558626,P35) p(14.045737442258176,9.632738820158028,P36) p(13.08116600158423,9.896560608182034,P37) p(13.334975351420583,8.929306342781437,P38) p(12.370403910746653,9.19312813080545,P39) p(12.792553600870635,10.564628899765474,P40) p(14.015975704803298,11.987670650744633,P41) p(14.193384188358072,12.97180795313836,P42) p(13.252392041895833,12.633379555546806,P43) p(13.429800525450608,13.61751685794053,P44) p(13.159824954395996,12.504396779924313,P45) p(12.488808378988367,13.279088460348976,P46) p(12.666216862543141,14.2632257627427,P47) p(12.165592848086803,13.397560933753086,P48) p(11.666217122247255,14.26394646251163,P49) p(11.165593107790915,13.398281633522016,P50) p(10.666217381951366,14.26466716228056,P51) p(10.16559336749503,13.399002333290948,P52) p(12.818972846975765,11.564279850565423,P53) p(12.17523375733326,12.329524899204248,P54) p(10.419402717331382,12.43174806789035,P55) p(11.871028184907088,10.059513659563986,P56) p(10.96544251127196,9.635350262148778,P57) p(11.324988390966519,12.855911465305539,P58) p(11.050899070572438,10.631692159527647,P59) p(11.239531831666017,11.859569567926671,P60) p(10.370604095435905,11.364630592688293,P61) p(11.919826806802563,11.126631134766036,P62) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P51,P12) s(P52,P12) s(P7,P13) s(P6,P13) s(P61,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P28,P19) s(P19,P20) s(P17,P20) s(P20,P21) s(P21,P22) s(P20,P22) s(P21,P23) s(P22,P23) s(P23,P24) s(P22,P24) s(P23,P25) s(P24,P25) s(P25,P26) s(P24,P26) s(P38,P26) s(P39,P26) s(P13,P27) s(P18,P27) s(P27,P28) s(P18,P28) s(P57,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P34,P40) s(P35,P40) s(P62,P40) s(P33,P41) s(P33,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P34,P45) s(P41,P45) s(P43,P46) s(P44,P46) s(P54,P46) s(P44,P47) s(P46,P47) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P40,P53) s(P45,P53) s(P45,P54) s(P53,P54) s(P52,P55) s(P11,P55) s(P25,P56) s(P39,P56) s(P21,P57) s(P56,P57) s(P48,P58) s(P55,P58) s(P54,P58) s(P57,P59) s(P56,P59) s(P62,P59) s(P58,P60) s(P55,P60) s(P27,P61) s(P59,P61) s(P60,P61) s(P53,P62) s(P60,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) color(#FFA500) m(P19,P20,MA12) m(P20,P21,MB12) b(P20,MA12,MB12) pen(2) color(red) s(P19,P28) abstand(P19,P28,A0) print(abs(P19,P28):,7.33,15.933) print(A0,8.37,15.933) color(red) s(P28,P57) abstand(P28,P57,A1) print(abs(P28,P57):,7.33,15.695) print(A1,8.37,15.695) color(red) s(P61,P60) abstand(P61,P60,A2) print(abs(P61,P60):,7.33,15.457) print(A2,8.37,15.457) color(red) s(P13,P61) abstand(P13,P61,A3) print(abs(P13,P61):,7.33,15.218) print(A3,8.37,15.218) print(min=0.9999999999999809,7.33,14.98) print(max=1.0380262854234348,7.33,14.742) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1179, vom Themenstarter, eingetragen 2018-04-29

Fast 116er. \geo ebene(469.3,520.5) x(7.07,13.85) y(8.59,16.1) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-22.426028982229237,317.1329544426907]; #P[2]=[-87.39476758012242,293.1681410309724]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); #M(18,17,16,orange_angle); #N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12); #N(25,11,24); N(26,25,24); N(27,26,18); N(28,27,22); #N(29,27,28); N(30,11,25); #A(10,23,ab(23,10,[1,30])); # # R(29,58); R(29,30);R(16,26); R(28,39); # #A(16,26); A(28,39); A(29,30); A(54,45); A(9,56); A(57,58); A(29,58); A(30,57); # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.676147849842163,14.579686812299991,P1) p(8.737940479083711,14.233613222648149,P2) p(9.506752684680304,13.594138600379445,P3) p(8.568545313921852,13.248065010727602,P4) p(7.79973310832526,13.887539632996306,P5) p(9.337357519518445,12.608590388458898,P6) p(10.17950891514559,13.715610636296626,P7) p(10.676140301717705,14.583572194127076,P8) p(11.179501367021132,13.71949601812371,P9) p(11.676132753593247,14.587457575954158,P10) p(10.330316685729121,12.727047529392658,P11) p(8.519115402974927,13.192925269378206,P12) p(7.557870570923257,12.917229108987902,P13) p(8.277252865572926,12.222614745369802,P14) p(7.316008033521255,11.946918584979496,P15) p(8.035390328170923,11.252304221361397,P16) p(7.074145496119252,10.976608060971092,P17) p(8.066246522263066,11.102049497204868,P18) p(7.678831479656815,10.180144087326829,P19) p(8.670932505800629,10.305585523560605,P20) p(8.283517463194379,9.383680113682566,P21) p(9.275618489338193,9.509121549916342,P22) p(8.888203446731941,8.5872161400383,P23) p(8.425860833412063,12.197282971534424,P24) p(9.418819999622738,12.315740112468184,P25) p(9.02492730982571,11.396583679142244,P26) p(8.799675262683305,10.422283152991225,P27) p(9.797851992147468,10.361924087754705,P28) p(9.351036111258894,11.256550025555399,P29) p(10.230771014497481,11.732014535296964,P30) p(10.888188350483025,8.594986903692467,P31) p(11.82639572124148,8.941060493344311,P32) p(11.057583515644884,9.580535115613015,P33) p(11.995790886403338,9.926608705264858,P34) p(12.76460309199993,9.287134082996154,P35) p(11.226978680806747,10.566083327533558,P36) p(10.3848272851796,9.459063079695833,P37) p(9.888195898607483,8.591101521865385,P38) p(9.384834833304124,9.455177697868718,P39) p(10.234019514596065,10.447626186599804,P40) p(12.045220797350263,9.981748446614253,P41) p(13.00646562940193,10.257444607004558,P42) p(12.287083334752264,10.95205897062266,P43) p(13.248328166803935,11.227755131012964,P44) p(12.528945872154265,11.922369494631063,P45) p(13.490190704205936,12.198065655021367,P46) p(12.498089678062122,12.072624218787592,P47) p(12.885504720668372,12.994529628665632,P48) p(11.89340369452456,12.869088192431855,P49) p(12.28081873713081,13.790993602309895,P50) p(11.288717710986997,13.665552166076118,P51) p(12.138475366913127,10.977390744458036,P52) p(11.145516200702453,10.858933603524275,P53) p(11.53940889049948,11.778090036850216,P54) p(11.764660937641885,12.752390563001235,P55) p(10.766484208177722,12.812749628237754,P56) p(11.213300089066296,11.918123690437062,P57) p(10.333565185827707,11.442659180695495,P58) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P56,P9) s(P8,P10) s(P9,P10) s(P50,P10) s(P51,P10) s(P7,P11) s(P6,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P26,P16) s(P16,P17) s(P15,P17) s(P17,P18) s(P18,P19) s(P17,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P38,P23) s(P39,P23) s(P6,P24) s(P12,P24) s(P11,P25) s(P24,P25) s(P25,P26) s(P24,P26) s(P26,P27) s(P18,P27) s(P27,P28) s(P22,P28) s(P39,P28) s(P27,P29) s(P28,P29) s(P30,P29) s(P58,P29) s(P11,P30) s(P25,P30) s(P57,P30) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P32,P35) s(P34,P35) s(P33,P36) s(P34,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P36,P40) s(P37,P40) s(P35,P41) s(P35,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P36,P52) s(P41,P52) s(P40,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P45,P54) s(P47,P55) s(P54,P55) s(P51,P56) s(P55,P56) s(P55,P57) s(P56,P57) s(P58,P57) s(P40,P58) s(P53,P58) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12) pen(2) color(red) s(P29,P58) abstand(P29,P58,A0) print(abs(P29,P58):,7.07,16.104) print(A0,8.01,16.104) color(red) s(P29,P30) abstand(P29,P30,A1) print(abs(P29,P30):,7.07,15.887) print(A1,8.01,15.887) color(red) s(P16,P26) abstand(P16,P26,A2) print(abs(P16,P26):,7.07,15.671) print(A2,8.01,15.671) color(red) s(P28,P39) abstand(P28,P39,A3) print(abs(P28,P39):,7.07,15.454) print(A3,8.01,15.454) print(min=0.9963795406722769,7.07,15.237) print(max=1.0000000000000067,7.07,15.021) \geooff \geoprint() Fast 116er #2. \geo ebene(443.6,534.62) x(7.48,13.89) y(8.4,16.12) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-33.24662815963998,318.12773339202505]; #P[2]=[-93.66657101010139,284.294616733833]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); #M(18,17,16,orange_angle); #N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12); #N(25,11,24); N(26,25,24); N(27,26,18); N(28,27,22); #N(29,25,27); #A(10,23,ab(23,10,[1,29])); #N(57,28,39); N(58,55,11); #R(16,26); R(29,57); R(29,58); R(28,38); # #A(16,26); A(29,57); A(29,58); A(28,38); A(44,53); A(57,56); A(9,55); A(56,58); # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.519888606960714,14.594052320430249,P1) p(8.647369962663909,14.10547150280182,P2) p(9.506752684680302,13.594138600379441,P3) p(8.634234040383497,13.105557782751013,P4) p(7.774851318367103,13.616890685173392,P5) p(9.493616762399892,12.594224880328635,P6) p(10.024918529097334,13.730950485333903,P7) p(10.519871683275428,14.599870145123667,P8) p(11.024901605412047,13.736768310027323,P9) p(11.519854759590139,14.605687969817087,P10) p(10.464726409273108,12.832858603322217,P11) p(8.587929439578975,13.034736093328085,P12) p(7.677229713505243,12.621667081019934,P13) p(8.490307834717115,12.03951248917463,P14) p(7.579608108643384,11.626443476866479,P15) p(8.392686229855256,11.044288885021174,P16) p(7.481986503781525,10.631219872713022,P17) p(8.460155926935279,10.839028870610257,P18) p(8.151039086672395,9.888004802005318,P19) p(9.129208509826148,10.095813799902553,P20) p(8.820091669563263,9.144789731297616,P21) p(9.798261092717016,9.352598729194849,P22) p(9.489144252454132,8.401574660589912,P23) p(8.662886749927189,12.037549349721171,P24) p(9.633996396800404,12.276183072714753,P25) p(9.355104439675896,11.315860587165622,P26) p(9.312930857748247,10.316750288456118,P27) p(10.307554227574302,10.213191840245154,P28) p(9.591822814872753,11.27707277400525,P29) p(11.489110405083554,8.413210309976748,P30) p(12.361629049380364,8.901791127605176,P31) p(11.502246327363972,9.413124030027554,P32) p(12.374764971660776,9.901704847655985,P33) p(13.23414769367717,9.390371945233609,P34) p(11.515382249644382,10.413037750078363,P35) p(10.984080482946942,9.276312145073092,P36) p(10.489127328768847,8.40739248528333,P37) p(9.984097406632214,9.270494320379681,P38) p(10.544272602771166,10.17440402708478,P39) p(12.421069572465298,9.972526537078911,P40) p(13.33176929853903,10.385595549387062,P41) p(12.518691177327158,10.967750141232367,P42) p(13.429390903400886,11.38081915354052,P43) p(12.616312782189016,11.962973745385824,P44) p(13.527012508262748,12.376042757693977,P45) p(12.548843085108993,12.16823375979674,P46) p(12.857959925371878,13.119257828401679,P47) p(11.879790502218125,12.911448830504444,P48) p(12.18890734248101,13.862472899109383,P49) p(11.21073791932732,13.654663901212126,P50) p(12.346112262117083,10.969713280685825,P51) p(11.375002615243867,10.731079557692244,P52) p(11.653894572368376,11.691402043241377,P53) p(11.696068154296025,12.690512341950878,P54) p(10.701444784469974,12.794070790161843,P55) p(11.417176197171518,11.730189856401747,P56) p(10.586446184698813,11.173514325794283,P57) p(10.422552827345454,11.833748304612715,P58) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P55,P9) s(P8,P10) s(P9,P10) s(P49,P10) s(P50,P10) s(P7,P11) s(P6,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P26,P16) s(P16,P17) s(P15,P17) s(P17,P18) s(P18,P19) s(P17,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P37,P23) s(P38,P23) s(P6,P24) s(P12,P24) s(P11,P25) s(P24,P25) s(P25,P26) s(P24,P26) s(P26,P27) s(P18,P27) s(P27,P28) s(P22,P28) s(P38,P28) s(P25,P29) s(P27,P29) s(P57,P29) s(P58,P29) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P31,P34) s(P33,P34) s(P32,P35) s(P33,P35) s(P30,P36) s(P30,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P35,P39) s(P36,P39) s(P34,P40) s(P34,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P53,P44) s(P43,P45) s(P44,P45) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P35,P51) s(P40,P51) s(P39,P52) s(P51,P52) s(P51,P53) s(P52,P53) s(P46,P54) s(P53,P54) s(P50,P55) s(P54,P55) s(P52,P56) s(P54,P56) s(P58,P56) s(P28,P57) s(P39,P57) s(P56,P57) s(P55,P58) s(P11,P58) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12) pen(2) color(red) s(P16,P26) abstand(P16,P26,A0) print(abs(P16,P26):,7.48,16.122) print(A0,8.42,16.122) color(red) s(P29,P57) abstand(P29,P57,A1) print(abs(P29,P57):,7.48,15.905) print(A1,8.42,15.905) color(red) s(P29,P58) abstand(P29,P58,A2) print(abs(P29,P58):,7.48,15.689) print(A2,8.42,15.689) color(red) s(P28,P38) abstand(P28,P38,A3) print(abs(P28,P38):,7.48,15.472) print(A3,8.42,15.472) print(min=0.9966458392902035,7.48,15.256) print(max=1.0000000000000153,7.48,15.039) \geooff \geoprint() Versuch. \geo ebene(455.76,510.64) x(7.14,13.73) y(8.54,15.91) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-52.03833129803893,318.1013122527738]; #P[2]=[-113.03954120151225,285.32782194166646]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); #M(18,17,16,orange_angle); #N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12); #N(25,11,24); N(26,16,18); #A(10,23,ab(23,10,[1,26])); #N(51,22,35); N(52,47,9); N(53,51,36); N(54,52,11); N(55,51,53); N(56,52,54); # #R(24,26); R(25,26); R(49,53); A(24,26); A(25,26); A(49,53); A(50,49); A(50,48); #A(25,54); # # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.248519410420359,14.593670775272926,P1) p(8.36760674393251,14.120391920873885,P2) p(9.21793458816,13.594138600379441,P3) p(8.337021921672152,13.120859745980399,P4) p(7.486694077444661,13.647113066474844,P5) p(9.187349765899642,12.594606425485953,P6) p(9.757453438675771,13.732865248522709,P7) p(10.248465878431798,14.60401780921735,P8) p(10.75739990668721,13.743212282467134,P9) p(11.248412346443237,14.614364843161775,P10) p(10.16199846220037,12.818347165627962,P11) p(8.289875265582284,13.051378243737549,P12) p(7.372363181103954,12.653670342337247,P13) p(8.175544369241576,12.057935519599951,P14) p(7.258032284763246,11.660227618199649,P15) p(8.061213472900869,11.064492795462353,P16) p(7.14370138842254,10.666784894062053,P17) p(8.110298064701519,10.923087187080338,P18) p(7.848964023364068,9.957838763699996,P19) p(8.815560699643047,10.214141056718281,P20) p(8.554226658305595,9.24889263333794,P21) p(9.520823334584573,9.505194926356225,P22) p(9.259489293247123,8.539946502975884,P23) p(8.34672063620497,12.052995249171449,P24) p(9.321369332505698,12.276735989313458,P25) p(9.027810149179846,11.32079508848064,P26) p(11.25938222927,8.56064057086473,P27) p(12.140294895757847,9.033919425263774,P28) p(11.289967051530358,9.560172745758218,P29) p(12.170879718018206,10.033451600157258,P30) p(13.0212075622457,9.507198279662814,P31) p(11.320551873790714,10.559704920651704,P32) p(10.750448201014583,9.42144609761495,P33) p(10.259435761258556,8.550293536920309,P34) p(9.750501733003135,9.411099063670529,P35) p(10.345903177489987,10.335964180509697,P36) p(12.218026374108074,10.10293310240011,P37) p(13.135538458586407,10.500641003800414,P38) p(12.332357270448783,11.096375826537708,P39) p(13.249869354927114,11.494083727938008,P40) p(12.44668816678949,12.089818550675306,P41) p(13.364200251267821,12.487526452075606,P42) p(12.39760357498884,12.231224159057321,P43) p(12.658937616326293,13.196472582437663,P44) p(11.692340940047313,12.940170289419378,P45) p(11.953674981384765,13.905418712799719,P46) p(10.987078305105786,13.649116419781434,P47) p(12.161181003485389,11.101316096966208,P48) p(11.18653230718466,10.8775753568242,P49) p(11.480091490510514,11.833516257657019,P50) p(10.011835774340607,10.376347487050865,P51) p(10.496065865349756,12.777963859086793,P52) p(10.29716870467539,11.334775950143737,P53) p(10.210732935014965,11.819535395993922,P54) p(9.324478842759495,11.102667284803477,P55) p(11.183422796930863,12.051644061334175,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P46,P10) s(P47,P10) s(P7,P11) s(P6,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P17,P18) s(P18,P19) s(P17,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P34,P23) s(P35,P23) s(P6,P24) s(P12,P24) s(P26,P24) s(P11,P25) s(P24,P25) s(P26,P25) s(P54,P25) s(P16,P26) s(P18,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P29,P32) s(P30,P32) s(P27,P33) s(P27,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P33,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P32,P48) s(P37,P48) s(P36,P49) s(P48,P49) s(P53,P49) s(P41,P50) s(P43,P50) s(P49,P50) s(P48,P50) s(P22,P51) s(P35,P51) s(P47,P52) s(P9,P52) s(P51,P53) s(P36,P53) s(P52,P54) s(P11,P54) s(P51,P55) s(P53,P55) s(P52,P56) s(P54,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12) pen(2) color(red) s(P24,P26) abstand(P24,P26,A0) print(abs(P24,P26):,7.14,15.914) print(A0,8.08,15.914) color(red) s(P25,P26) abstand(P25,P26,A1) print(abs(P25,P26):,7.14,15.697) print(A1,8.08,15.697) color(red) s(P49,P53) abstand(P49,P53,A2) print(abs(P49,P53):,7.14,15.481) print(A2,8.08,15.481) print(min=0.9999999999999937,7.14,15.264) print(max=1.0000000000000087,7.14,15.048) \geooff \geoprint() Jetzt haben wir schon fast richtige 4/4 mit nur zwei leicht falschen Kanten für 108(3x), 112, 116(2x), 120, 122, 128.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1180, vom Themenstarter, eingetragen 2018-05-01

Fast 116er. Nette Idee, haut aber leider nicht hin. Vielleicht den gelben Winkel bei P23 ansetzen? \geo ebene(443.13,552.91) x(7.17,13.57) y(8.35,16.33) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[-55.66368498849954,318.11729891115306]; #P[2]=[-114.86606289902058,282.1961668772135]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); #M(18,17,16,orange_angle); #N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12); #N(25,11,24); N(26,24,16); #A(10,23,ab(23,10,[1,26])); R(35,36); R(18,26); A(35,36); A(18,26); A(11,9); #A(43,50); #N(51,22,26); N(52,47,50); N(53,51,49); N(54,52,25); N(55,51,53); N(56,53,49); #N(57,52,54); N(58,54,25); #R(55,56); R(55,58); R(56,57); A(55,56); A(57,58); A(55,58); A(56,57); # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.196166022815774,14.593901637085061,P1) p(8.341230117936142,14.075167988140208,P2) p(9.217934588160002,13.594138600379436,P3) p(8.36299868328037,13.075404951434582,P4) p(7.486294213056509,13.556434339195352,P5) p(9.23970315350423,12.594375563673811,P6) p(9.699221716406303,13.729647641348766,P7) p(10.196159785240878,14.597433649384712,P8) p(10.699215478831405,13.733179653648417,P9) p(11.196153547665983,14.600965661684363,P10) p(10.202277409996833,12.865393645612473,P11) p(8.295112944517204,12.968376298149815,P12) p(7.38143037634171,12.56194775017092,P13) p(8.190249107802403,11.973889709125382,P14) p(7.276566539626909,11.567461161146486,P15) p(8.085385271087603,10.97940312010095,P16) p(7.171702702912108,10.572974572122053,P17) p(8.149249972873147,10.783690814950456,P18) p(7.842961957172035,9.83175192434987,P19) p(8.820509227133075,10.042468167178273,P20) p(8.514221211431963,9.090529276577685,P21) p(9.491768481393002,9.30124551940609,P22) p(9.185480465691889,8.349306628805502,P23) p(8.450306410519595,11.98049220165359,P24) p(9.412880667012198,12.25151028359225,P25) p(9.062932541048642,11.190119362929353,P26) p(11.185467990542099,8.356370653404802,P27) p(12.04040389542173,8.875104302349659,P28) p(11.163699425197867,9.356133690110429,P29) p(12.018635330077501,9.874867339055285,P30) p(12.895339800301363,9.393837951294511,P31) p(11.141930859853641,10.355896726816056,P32) p(10.682412296951568,9.220624649141099,P33) p(10.185474228116986,8.352838641105155,P34) p(9.68241853452646,9.21709263684145,P35) p(10.179356603361043,10.084878644877392,P36) p(12.08652106884067,9.981895992340052,P37) p(13.000203637016163,10.388324540318946,P38) p(12.191384905555468,10.976382581364481,P39) p(13.105067473730962,11.382811129343377,P40) p(12.296248742270269,11.970869170388916,P41) p(13.209931310445763,12.377297718367812,P42) p(12.232384040484725,12.16658147553941,P43) p(12.538672056185835,13.118520366139997,P44) p(11.561124786224797,12.907804123311593,P45) p(11.867412801925909,13.85974301391218,P46) p(10.889865531963563,13.649026771084197,P47) p(11.931327602838277,10.969780088836277,P48) p(10.968753346345675,10.698762006897613,P49) p(11.318701472309229,11.760152927560512,P50) p(9.034406823476841,10.19052630401137,P51) p(11.34722718987902,12.759745986478555,P52) p(10.001580084911259,10.44464415545449,P53) p(10.380053928445609,12.505628135035403,P54) p(9.297920939297367,11.15518184396505,P55) p(10.265094200731783,11.409299695408173,P56) p(11.083713074059308,11.795090446524652,P57) p(10.116539812625897,11.5409725950815,P58) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P46,P10) s(P47,P10) s(P7,P11) s(P6,P11) s(P9,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P17,P18) s(P26,P18) s(P18,P19) s(P17,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P34,P23) s(P35,P23) s(P6,P24) s(P12,P24) s(P11,P25) s(P24,P25) s(P24,P26) s(P16,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P29,P32) s(P30,P32) s(P27,P33) s(P27,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P36,P35) s(P32,P36) s(P33,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P42,P43) s(P50,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P32,P48) s(P37,P48) s(P36,P49) s(P48,P49) s(P41,P50) s(P48,P50) s(P22,P51) s(P26,P51) s(P47,P52) s(P50,P52) s(P51,P53) s(P49,P53) s(P52,P54) s(P25,P54) s(P51,P55) s(P53,P55) s(P56,P55) s(P58,P55) s(P53,P56) s(P49,P56) s(P57,P56) s(P52,P57) s(P54,P57) s(P58,P57) s(P54,P58) s(P25,P58) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12) pen(2) color(red) s(P35,P36) abstand(P35,P36,A0) print(abs(P35,P36):,7.17,16.334) print(A0,8.11,16.334) color(red) s(P18,P26) abstand(P18,P26,A1) print(abs(P18,P26):,7.17,16.117) print(A1,8.11,16.117) color(red) s(P55,P56) abstand(P55,P56,A2) print(abs(P55,P56):,7.17,15.901) print(A2,8.11,15.901) color(red) s(P55,P58) abstand(P55,P58,A3) print(abs(P55,P58):,7.17,15.684) print(A3,8.11,15.684) color(red) s(P56,P57) abstand(P56,P57,A4) print(abs(P56,P57):,7.17,15.467) print(A4,8.11,15.467) print(min=0.9049703660424712,7.17,15.251) print(max=1.0000000000278781,7.17,15.034) \geooff \geoprint() Fast 112er. \geo ebene(481.65,524.85) x(7.74,14.7) y(8.47,16.05) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[206.37550833773253,-67.24795296646646]; #P[2]=[253.38328067979302,-16.399957762162632]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); #M(18,17,16,orange_angle); #N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12); #N(25,11,24); N(26,16,18); #A(10,23,ab(10,23,[1,26],"gespiegelt")); #R(9,11); R(24,26); A(9,11); A(24,26); A(48,50); A(35,36); #N(51,50,47); N(52,22,26); N(53,51,49); N(54,25,52); N(55,52,51); #R(53,55); A(53,55); A(54,55); N(56,53,49); N(57,25,54); # # # #//Ende der Eingabe, weiter mit fedgeo: p(12.98024907432574,9.028878711466898,P1) p(13.659083840800434,9.763169770805938,P2) p(12.683751746403694,9.98391239387558,P3) p(13.362586512878387,10.718203453214619,P4) p(14.337918607275128,10.497460830144975,P5) p(12.387254418481646,10.93894607628426,P6) p(12.258460219014454,9.72099203191986,P7) p(12.019966928860233,8.749847886825314,P8) p(11.298178073548947,9.441961207278274,P9) p(11.059684783394728,8.470817062183729,P10) p(11.536671363703167,10.413105352372819,P11) p(13.38459519397866,10.799411934896671,P12) p(14.12275422804264,11.474038676458058,P13) p(13.169430814746171,11.775989781209754,P14) p(13.90758984881015,12.450616522771139,P15) p(12.95426643551368,12.752567627522836,P16) p(13.692425469577662,13.427194369084221,P17) p(12.861696130689174,12.870517833284575,P18) p(12.794964778440207,13.868288812330881,P19) p(11.964235439551718,13.311612276531235,P20) p(11.897504087302751,14.309383255577544,P21) p(11.066774748414263,13.752706719777896,P22) p(11.000043396165296,14.750477698824202,P23) p(13.005634956264476,11.724824890409836,P24) p(12.155051901485995,11.198984166498393,P25) p(12.123537096625192,12.195891091723192,P26) p(9.128867464167266,8.992300024293979,P27) p(8.436208479906004,9.713565253957903,P28) p(9.407171983792011,9.95279291565572,P29) p(8.714512999530749,10.674058145319645,P30) p(7.743549495644741,10.43483048362183,P31) p(9.685476503416757,10.913285807017463,P32) p(9.83738054038825,9.69799770802539,P33) p(10.094276123780997,8.731558543238854,P34) p(10.802789200001978,9.437256226970266,P35) p(10.54589361660923,10.403695391756804,P36) p(8.69096586458603,10.7548339583875,P37) p(7.940126541669022,11.415318864469032,P38) p(8.887542910610309,11.735322339234703,P39) p(8.136703587693301,12.395807245316234,P40) p(9.084119956634591,12.715810720081905,P41) p(8.333280633717584,13.376295626163436,P42) p(9.174433288908658,12.835497872224868,P43) p(9.222201554533484,13.834356317050359,P44) p(10.063354209724562,13.293558563111791,P45) p(10.111122475349386,14.292417007937281,P46) p(10.952275130540443,13.751619253998712,P47) p(9.0522810163544,11.687277715995755,P48) p(9.91269812954687,11.177687300735094,P49) p(9.92527261182567,12.17501296614334,P50) p(10.15475604875224,13.14832553267907,P51) p(11.875608555502561,13.16466941440429,P52) p(10.153237490934922,12.148326685688657,P53) p(11.896120203055409,12.164879800378085,P54) p(11.020021175092438,12.64701099953697,P55) p(10.873566175524383,11.454693795639736,P56) p(11.189095895926416,11.4576905547523,P57) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P11,P9) s(P8,P10) s(P9,P10) s(P34,P10) s(P35,P10) s(P7,P11) s(P6,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P17,P18) s(P18,P19) s(P17,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P46,P23) s(P47,P23) s(P6,P24) s(P12,P24) s(P26,P24) s(P11,P25) s(P24,P25) s(P16,P26) s(P18,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P29,P32) s(P30,P32) s(P27,P33) s(P27,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P36,P35) s(P32,P36) s(P33,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P32,P48) s(P37,P48) s(P50,P48) s(P36,P49) s(P48,P49) s(P41,P50) s(P43,P50) s(P50,P51) s(P47,P51) s(P22,P52) s(P26,P52) s(P51,P53) s(P49,P53) s(P55,P53) s(P25,P54) s(P52,P54) s(P55,P54) s(P52,P55) s(P51,P55) s(P53,P56) s(P49,P56) s(P25,P57) s(P54,P57) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12) pen(2) color(red) s(P9,P11) abstand(P9,P11,A0) print(abs(P9,P11):,7.74,16.05) print(A0,8.68,16.05) color(red) s(P24,P26) abstand(P24,P26,A1) print(abs(P24,P26):,7.74,15.834) print(A1,8.68,15.834) color(red) s(P53,P55) abstand(P53,P55,A2) print(abs(P53,P55):,7.74,15.617) print(A2,8.68,15.617) print(min=0.9999999999999789,7.74,15.4) print(max=1.000000000000023,7.74,15.184) \geooff \geoprint() Fast 4/6 mit 109. \geo ebene(474.91,551.62) x(7.83,14.69) y(8.59,16.55) form(.) #//Eingabe war: # #4/4 fast mit 124 # # # # # #P[1]=[207.52657734675938,-56.879551665149286]; #P[2]=[253.6397702985784,-5.218902108177764]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); #M(18,17,16,orange_angle); #N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12); #N(25,16,18); #A(10,23,ab(10,23,[1,25],"gespiegelt")); #R(24,25); R(9,11); A(24,25); A(9,11); A(34,35); A(47,48); #N(49,22,46); N(50,48,47); N(51,24,25); N(52,50,35); N(53,50,52); N(54,53,52); #R(52,11); A(52,11); A(51,52); A(51,54); A(49,53); A(49,54); R(49,53); # # # #//Ende der Eingabe, weiter mit fedgeo: p(12.996871552333268,9.178607807857155,P1) p(13.662787782974167,9.924634331359513,P2) p(12.683751746403686,10.128321442135732,P3) p(13.349667977044588,10.87434796563809,P4) p(14.32870401361507,10.670660854861872,P5) p(12.370631940474107,11.07803507641431,P6) p(12.263113585991503,9.85801876363429,P7) p(12.04160542184992,8.88286024666455,P8) p(11.307847455508158,9.562271202441682,P9) p(11.086339291366576,8.58711268547194,P10) p(11.529355619649738,10.537429719411424,P11) p(13.377469073231174,10.979128175971981,P12) p(14.120227079741808,11.648688138756755,P13) p(13.168992139357913,11.957155459866867,P14) p(13.911750145868547,12.62671542265164,P15) p(12.960515205484652,12.93518274376175,P16) p(13.703273211995286,13.604742706546524,P17) p(12.850525185128854,13.082420198247863,P18) p(12.82455463740702,14.08208290669058,P19) p(11.971806610540588,13.55976039839192,P20) p(11.945836062818756,14.559423106834634,P21) p(11.093088035952322,14.037100598535973,P22) p(11.06711748823049,15.036763306978692,P23) p(12.958384874663842,11.887075550279093,P24) p(12.107767178618218,12.41286023546309,P25) p(9.172315351300503,9.167209536742437,P26) p(8.501964244791406,9.909253601473118,P27) p(9.479768808830189,10.118772656799663,P28) p(8.809417702321092,10.860816721530345,P29) p(7.831613138282309,10.651297666203797,P30) p(9.787222266359873,11.07033577685689,P31) p(9.902010641244827,9.850982001699215,P32) p(10.12932732133354,8.877161111107188,P33) p(10.859022611277863,9.560933576063967,P34) p(10.63170593118915,10.534754466655992,P35) p(8.78099255556426,10.965429361582313,P36) p(8.034256818591617,11.630550207089295,P37) p(8.983636235873568,11.94468190246781,P38) p(8.236900498900924,12.60980274797479,P39) p(9.186279916182876,12.923934443353303,P40) p(8.439544179210229,13.589055288860285,P41) p(9.295390371031264,13.071824879907526,P42) p(9.315401948883652,14.071624628233087,P43) p(10.171248140704678,13.554394219280326,P44) p(10.191259718557074,14.554193967605887,P45) p(11.047105910378269,14.036963558653127,P46) p(9.194657471959278,11.875858566377447,P47) p(10.042126108003906,12.406704034400544,P48) p(11.073076458100038,13.037300850210409,P49) p(10.078117450773435,11.4073519326638,P50) p(12.077733132350886,11.413311359186991,P51) p(11.077867547841436,11.429706874232071,P52) p(10.558632552009197,12.284338384944785,P53) p(11.558382649077199,12.306693326513054,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P11,P9) s(P8,P10) s(P9,P10) s(P33,P10) s(P34,P10) s(P7,P11) s(P6,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P17,P18) s(P18,P19) s(P17,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P45,P23) s(P46,P23) s(P6,P24) s(P12,P24) s(P25,P24) s(P16,P25) s(P18,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P35,P34) s(P31,P35) s(P32,P35) s(P30,P36) s(P30,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P31,P47) s(P36,P47) s(P48,P47) s(P40,P48) s(P42,P48) s(P22,P49) s(P46,P49) s(P53,P49) s(P54,P49) s(P48,P50) s(P47,P50) s(P24,P51) s(P25,P51) s(P52,P51) s(P54,P51) s(P50,P52) s(P35,P52) s(P11,P52) s(P50,P53) s(P52,P53) s(P53,P54) s(P52,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12) pen(2) color(red) s(P24,P25) abstand(P24,P25,A0) print(abs(P24,P25):,7.83,16.553) print(A0,8.77,16.553) color(red) s(P9,P11) abstand(P9,P11,A1) print(abs(P9,P11):,7.83,16.336) print(A1,8.77,16.336) color(red) s(P52,P11) abstand(P52,P11,A2) print(abs(P52,P11):,7.83,16.12) print(A2,8.77,16.12) color(red) s(P49,P53) abstand(P49,P53,A3) print(abs(P49,P53):,7.83,15.903) print(A3,8.77,15.903) print(min=0.8771028746298477,7.83,15.687) print(max=1.0333713098494652,7.83,15.47) \geooff \geoprint()


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1181, eingetragen 2018-05-05

Beim Versuch #1154 treffen im roten Kreis drei konvexe und ein konkaves Viereck zusammen. Konkave Vierecke mit Kantenlänge 1 sind aber nicht möglich. Deshalb müssen im nachfolgenden Teilgraph die beiden Winkel blau und grün so eingestellt werden, dass genau wie in P8 und P10 auch in P12 ein konvexes Viereck angefügt werden kann. Geometrisch lässt sich aber begründen, dass das nicht geht: P7-P8 parallel P6-P10 parallel P11-P12 parallel P13-P24 parallel P17-P16, P14-P16 parallel P19-P24 parallel P23-P12, P7-P8 Ist gegenüber P9-P8 um 60° gedreht, P14-P16 ist gegenüber P17-P16 um 120° gedreht, also ist P23-P12 gegenüber P9-P8 um 180° gedreht und damit P12-P23 parallel P9-P8, nur konvexe Vierecke entlang P9, P8, P10, P12, P23 sind nicht möglich. \geo ebene(342.74,391.9) x(9.27,14.53) y(10.53,16.54) form(.) #//Eingabe war: # ##1154 # # # # # #P[1]=[215.07,142.01]; P[2]=[242.74,201.07]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); #L(4,3,2); L(5,4,2); M(6,1,3,blauerWinkel,1); M(8,7,6,gruenerWinkel,1); #N(10,8,6); N(11,6,3); N(12,10,11); N(13,11,4); #A(12,13,ab(12,13,[1,13],"gespiegelt")); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(13.297583249441823,12.177383164798593,P1) p(13.721836415908813,13.082926786466116,P2) p(12.72548605207628,12.997568995428754,P3) p(13.149739218543267,13.903112617096276,P4) p(14.1460895823758,13.988470408133638,P5) p(12.298257032185173,12.214086182433606,P6) p(12.766134395146029,11.330292782804033,P7) p(11.773809794613934,11.453953153088214,P8) p(12.16287907277249,10.532744655085086,P9) p(11.30593243165308,12.337746552717785,P10) p(11.72615983481963,13.034272013063768,P11) p(10.733835234287536,13.157932383347948,P12) p(12.15041300128662,13.939815634731293,P13) p(11.270581204615851,15.849806157978104,P14) p(12.262905805147945,15.726145787693927,P15) p(11.65965048277441,14.92859765997498,P16) p(12.651975083306503,14.804937289690802,P17) p(13.255230405680038,15.602485417409751,P18) p(10.769019122595965,14.984684503018597,P19) p(10.270582833046937,15.851610835102587,P20) p(9.846329666579951,14.946067213435065,P21) p(9.274232469214406,15.766253044065227,P22) p(10.344765956128978,14.079140881351076,P23) p(11.158088400754524,14.06347600501547,P24) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P6,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P15,P18) s(P17,P18) s(P14,P19) s(P14,P20) s(P19,P20) s(P20,P21) s(P20,P22) s(P21,P22) s(P19,P23) s(P21,P23) s(P16,P24) s(P19,P24) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) color(#008000) m(P6,P7,MA11) m(P7,P8,MB11) b(P7,MA11,MB11) pen(2) print(min=0.9999999999999973,9.27,16.542) print(max=1.000000000000001,9.27,16.312) color(blue) color(orange) color(red) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1182, vom Themenstarter, eingetragen 2018-05-10

Ich habe den fast 116er aus #1180 noch genauer hinbekommen. Der blaue Winkel ist ja eigentlich überflüssig. Vielleicht geht es noch genauer. \geo ebene(441.65,541.82) x(7.19,13.56) y(8.62,16.44) form(.) #//Eingabe war: # #4/4 fast mit 116 # # # # # #P[1]=[-56.87170869683338,338.08044646947377]; #P[2]=[-115.43815960250187,301.13156143658307]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); N(18,6,12); #N(19,18,16); N(20,11,18); R(9,11); A(9,11); #M(21,10,9,orange_angle); N(22,10,21); N(23,22,21); N(24,22,23); N(25,24,23); #N(26,24,25); #A(17,26,ab(26,17,[1,27])); A(19,50); A(25,44); #N(51,46,19); N(52,21,44); R(45,51); N(53,45,51); N(54,51,53); N(55,54,53); #N(56,52,20); N(57,56,20); N(58,56,57); #R(54,57); R(19,50); A(55,45); A(52,58); A(54,57); A(55,58); # # #//Ende der Eingabe, weiter mit fedgeo: p(9.178721067416154,14.882187551002481,P1) p(8.332968523889889,14.34861221881512,P2) p(9.217934588159997,13.882956696899752,P3) p(8.372182044633732,13.34938136471239,P4) p(7.487215980363624,13.815036886627759,P5) p(9.257148108903841,12.883725842797022,P6) p(9.696783455186578,14.026844717760977,P7) p(10.178500883833467,14.90317132293614,P8) p(10.69656327160389,14.047828489694634,P9) p(11.178280700250781,14.924155094869798,P10) p(10.214845842957002,13.17150188451947,P11) p(8.298613950448523,13.230542802703802,P12) p(7.386728240366212,12.820098589993133,P13) p(8.198126210451111,12.235604506069174,P14) p(7.2862405003688,11.825160293358506,P15) p(8.097638470453699,11.240666209434547,P16) p(7.185752760371389,10.830221996723878,P17) p(8.485154507628872,12.248095541764648,P18) p(9.077132139971058,11.442141149254415,P19) p(9.442852241682035,12.535871583487097,P20) p(10.876518683489627,13.970771811378714,P21) p(11.853053834916905,14.18612988071187,P22) p(11.55129181815575,13.232746597220787,P23) p(12.527826969583028,13.448104666553945,P24) p(12.226064952821874,12.49472138306286,P25) p(13.20260010424915,12.710079452396018,P26) p(11.209631797204386,8.658113898117415,P27) p(12.05538434073065,9.191689230304776,P28) p(11.170418276460543,9.657344752220144,P29) p(12.016170819986808,10.190920084407507,P30) p(12.901136884256916,9.725264562492136,P31) p(11.131204755716698,10.656575606322873,P32) p(10.69156940943396,9.513456731358922,P33) p(10.209851980787072,8.637130126183756,P34) p(9.691789593016649,9.492472959425264,P35) p(9.210072164369759,8.616146354250098,P36) p(10.173507021663537,10.368799564600428,P37) p(12.089738914172017,10.309758646416096,P38) p(13.00162462425433,10.720202859126763,P39) p(12.190226654169429,11.304696943050727,P40) p(13.10211236425174,11.715141155761383,P41) p(12.290714394166834,12.299635239685372,P42) p(11.903198356991666,11.292205907355251,P43) p(11.311220724649466,12.098160299865526,P44) p(10.945500622938505,11.004429865632801,P45) p(9.511834181130912,9.569529637741184,P46) p(8.535299029703635,9.354171568408026,P47) p(8.83706104646479,10.307554851899111,P48) p(7.860525895037512,10.092196782565953,P49) p(8.162287911798666,11.045580066057036,P50) p(9.02578366326441,10.443460352432973,P51) p(11.362569201356198,13.096841096686962,P52) p(9.985642143101458,10.723945109032886,P53) p(9.262805978593114,11.414964558309727,P54) p(10.222664458430161,11.69544931490964,P55) p(10.402710721519115,12.81635634008703,P56) p(10.1656884061904,11.84485213421028,P57) p(11.12554688602745,12.125336890810178,P58) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P11,P9) s(P8,P10) s(P9,P10) s(P7,P11) s(P6,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P49,P17) s(P50,P17) s(P6,P18) s(P12,P18) s(P18,P19) s(P16,P19) s(P50,P19) s(P11,P20) s(P18,P20) s(P10,P21) s(P10,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P44,P25) s(P24,P26) s(P25,P26) s(P41,P26) s(P42,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P29,P32) s(P30,P32) s(P27,P33) s(P27,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P37,P35) s(P34,P36) s(P35,P36) s(P32,P37) s(P33,P37) s(P31,P38) s(P31,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P32,P43) s(P38,P43) s(P42,P44) s(P43,P44) s(P37,P45) s(P43,P45) s(P36,P46) s(P36,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P46,P51) s(P19,P51) s(P21,P52) s(P44,P52) s(P58,P52) s(P45,P53) s(P51,P53) s(P51,P54) s(P53,P54) s(P57,P54) s(P54,P55) s(P53,P55) s(P45,P55) s(P58,P55) s(P52,P56) s(P20,P56) s(P56,P57) s(P20,P57) s(P56,P58) s(P57,P58) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P9,P10,MA12) m(P10,P21,MB12) f(P10,MA12,MB12) pen(2) color(red) s(P9,P11) abstand(P9,P11,A0) print(abs(P9,P11):,7.19,16.44) print(A0,8.12,16.44) color(red) s(P45,P51) abstand(P45,P51,A1) print(abs(P45,P51):,7.19,16.224) print(A1,8.12,16.224) color(red) s(P54,P57) abstand(P54,P57,A2) print(abs(P54,P57):,7.19,16.007) print(A2,8.12,16.007) color(red) s(P19,P50) abstand(P19,P50,A3) print(abs(P19,P50):,7.19,15.791) print(A3,8.12,15.791) print(min=0.9970961109777784,7.19,15.574) print(max=1.0000000029888099,7.19,15.357) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1183, vom Themenstarter, eingetragen 2018-05-11

Fast 108er mit zwei leicht zu kurzen Kanten. \geo ebene(534.18,578.48) x(7.12,14.13) y(8.35,15.95) form(.) #//Eingabe war: # #4/4 fast mit 116 # # # # # #P[1]=[-219.6325298060723,109.16140067847542]; #P[2]=[-190.7931797353783,38.65931906026753]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,2); N(11,9,7); M(12,5,4,gruenerWinkel); #N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); N(18,6,12); #N(19,18,16); N(20,6,18); #M(21,10,9,orange_angle); N(22,10,21); N(23,22,21); N(24,22,23); N(25,24,23); #N(26,24,25); #A(17,26,ab(26,17,[1,27])); N(51,21,11); A(25,44); N(52,46,37); #N(53,37,45); N(54,11,20); A(51,54); R(19,52); R(54,45); A(20,53); #A(53,52); A(19,50); A(54,45); A(19,52); A(51,44); R(53,52); R(19,50); # # #//Ende der Eingabe, weiter mit fedgeo: p(7.1166432185213875,11.433081270793085,P1) p(7.495248954535052,10.507523224716259,P2) p(8.107502867107838,11.298184433161012,P3) p(8.486108603121505,10.372626387084185,P4) p(7.873854690548718,9.581965178639434,P5) p(9.098362515694289,11.163287595528939,P6) p(8.070539149740227,11.733218826597323,P7) p(7.333664436174567,12.409248157697334,P8) p(8.287560367393407,12.709385713501572,P9) p(7.550685653827747,13.385415044601581,P10) p(9.024435080959067,12.03335638240156,P11) p(8.685005693654613,10.166801950876184,P12) p(8.785913693925984,9.171906189762874,P13) p(9.59706469703188,9.756742961999624,P14) p(9.697972697303252,8.761847200886313,P15) p(10.509123700409146,9.346683973123064,P16) p(10.61003170068052,8.351788212009755,P17) p(9.669465948446248,10.342409486977536,P18) p(10.6694284677209,10.333751539998364,P19) p(10.094815527486304,11.247438622204932,P20) p(8.351524502392229,12.786535141257083,P21) p(8.469750288222293,13.779521880123651,P22) p(9.270589136786773,13.180641976779151,P23) p(9.388814922616838,14.173628715645721,P24) p(10.18965377118132,13.574748812301223,P25) p(10.307879557011384,14.567735551167793,P26) p(13.801268039170516,11.48644249238446,P27) p(13.422662303156851,12.412000538461285,P28) p(12.810408390584065,11.621339330016534,P29) p(12.431802654570399,12.546897376093359,P30) p(13.044056567143185,13.337558584538112,P31) p(11.819548741997615,11.756236167648607,P32) p(12.847372107951676,11.186304936580223,P33) p(13.584246821517336,10.510275605480214,P34) p(12.630350890298496,10.210138049675974,P35) p(13.367225603864156,9.534108718575965,P36) p(11.893476176732836,10.886167380775985,P37) p(12.232905564037289,12.752721812301361,P38) p(12.131997563765918,13.747617573414672,P39) p(11.320846560660023,13.16278080117792,P40) p(11.219938560388645,14.157676562291233,P41) p(10.40878755728275,13.57283979005448,P42) p(11.248445309245652,12.57711427620001,P43) p(10.248482789971007,12.585772223179182,P44) p(10.8230957302056,11.672085140972614,P45) p(12.566386755299675,10.132988621920465,P46) p(12.44816096946961,9.140001883053895,P47) p(11.64732212090513,9.738881786398395,P48) p(11.529096335075065,8.745895047531825,P49) p(10.728257486510582,9.344774950876323,P50) p(9.331632032249944,12.9850023423665,P51) p(11.58627922544196,9.934521420811047,P52) p(10.91572812434893,10.676384764576545,P53) p(10.002183133342971,12.243138998601001,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P9,P11) s(P7,P11) s(P5,P12) s(P12,P13) s(P5,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P49,P17) s(P50,P17) s(P6,P18) s(P12,P18) s(P18,P19) s(P16,P19) s(P50,P19) s(P52,P19) s(P6,P20) s(P18,P20) s(P53,P20) s(P10,P21) s(P10,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P44,P25) s(P24,P26) s(P25,P26) s(P41,P26) s(P42,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P29,P32) s(P30,P32) s(P27,P33) s(P27,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P33,P37) s(P35,P37) s(P31,P38) s(P31,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P32,P43) s(P38,P43) s(P42,P44) s(P43,P44) s(P32,P45) s(P43,P45) s(P36,P46) s(P36,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P21,P51) s(P11,P51) s(P54,P51) s(P44,P51) s(P46,P52) s(P37,P52) s(P37,P53) s(P45,P53) s(P52,P53) s(P11,P54) s(P20,P54) s(P45,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11) color(#FFA500) m(P9,P10,MA12) m(P10,P21,MB12) f(P10,MA12,MB12) pen(2) color(red) s(P19,P52) abstand(P19,P52,A0) print(abs(P19,P52):,7.12,15.946) print(A0,7.97,15.946) color(red) s(P54,P45) abstand(P54,P45,A1) print(abs(P54,P45):,7.12,15.749) print(A1,7.97,15.749) color(red) s(P53,P52) abstand(P53,P52,A2) print(abs(P53,P52):,7.12,15.552) print(A2,7.97,15.552) color(red) s(P19,P50) abstand(P19,P50,A3) print(abs(P19,P50):,7.12,15.355) print(A3,7.97,15.355) print(min=0.9907247585900042,7.12,15.158) print(max=1.0000000000000049,7.12,14.962) \geooff \geoprint()


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1184, eingetragen 2018-05-12

\quoteon(2018-04-22 07:10 - haribo in Beitrag No. 1156) \quoteon(2018-04-16 03:54 - Slash in Beitrag No. 1136) Einfach an den Rauten orientieren, z.B. der sehr schmalen. \quoteoff das ist leider nicht einfach slash, stefan hat jedenfals in #1153 die schmalste raute nicht an der gleichen position wie du in #1141 angeordnet... bei dir liegt sie ca auf 10uhr bei ihm kurz vor 9uhr... ihr habt also wohl mit hohem aufwand verschiedene graphen durchgespielt? ich hab auch versucht deinen #1141 nachzuvollziehen und komme auf folgendes nachdem ich deinen linken kern in "normallage" gespiegegelt und gedreht habe (damit du auch ne chance hast diese transaktion zurückzuverstehen hatte ich vorher NSWO (nord-süd-west-ost) draufgeschrieben) http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-_1141.PNG also du benutzt den kern mit einer punktspiegelung zweimal, dadurch entsteht das grüne parallelogram, dies parallelogram erfordert zwei parallele linien im roten kern, die habe ich mit A und B bezeichnet, den kern öffnest du rechts oben, verwendest aber gleichzeitig im hinterlegten bereich neue verbindungen...und da müsste dann nach dem parallelisieren auch noch die gelbe 1,2 passen... ich denke das sind zu viele schritte auf einmal, meine frage wäre also erstmal: ob man A und B parallelisieren kann wenn man oben an der angegebenen stelle öffnet... \quoteoff Parallelisieren geht nicht, weil Kante A (P65-P64 im nachfolgenden Graph) immer parallel zu der "benachbarten Rautenkante" von B parallel ist (P77-P79), die Raute müsste zusammenfallen, um zu B parallel zu sein. Beweis: Es gilt P65-P64 parallel P63-P62, um -60° gedreht ergibt P58-P62 parallel P57-P60 parallel P1-P59 parallel P70-P71, um 60° gedreht ergibt P70-P72 parallel P77-P79. \geo ebene(498.83,507.16) x(5.01,14.98) y(10.33,20.48) form(.) #//Eingabe war: # ##1156 roter Kern # # # # # # # # #P[1]=[0,200]; P[2]=[50,200]; D=ab(1,2); A(2,1); #M(3,1,2,gruenerWinkel); N(4,3,2); L(5,3,4); #M(6,1,3,blauerWinkel); N(7,6,3); N(8,7,5); L(9,8,5); L(10,8,9); L(11,10,9); #L(12,6,7); #Q(13,12,10,ab(11,5,8,9,10),D); L(17,16,13); #N(18,6,14); N(19,1,18); L(20,19,18); #Q(21,20,17,ab(11,5,[8,10]),ab(5,11,[8,10])); L(28,25,27); #N(29,19,22); N(30,1,29); L(31,30,29); #Q(32,31,24,ab(13,12,[14,17]),D); #N(37,30,33); N(38,1,37); L(39,38,37); #Q(40,39,36,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(48,38,41); N(49,1,48); L(50,49,48); #Q(51,50,43,ab(13,12,[14,17]),D); #N(56,49,52); N(57,1,56); L(58,57,56); # #M(59,1,57,orangerWinkel); N(60,59,57); L(61,59,60); N(62,60,58); L(63,62,58); #L(64,62,63); L(65,64,63); N(66,65,55); L(67,66,55); L(68,66,67); L(69,68,67); #M(70,1,59,vierterWinkel); N(71,70,59); L(72,70,71); N(73,71,61); L(74,73,61); #L(75,73,74); M(76,1,70,fuenfterWinkel); N(77,76,70); L(78,76,77); N(79,77,72); #L(80,79,72); L(81,79,80); N(82,2,76); L(83,2,82); N(84,82,78); L(85,84,78); #L(86,84,85); L(87,86,85); N(88,4,83); L(89,88,83); L(90,88,89); L(91,90,89); #L(92,90,91); # # # # # # # # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,14,P1) p(11,14,P2) p(10.844678258782334,14.535274358754876,P3) p(11.844678258782334,14.535274358754876,P4) p(11.344678258782334,15.401299762539313,P5) p(10.29479775600703,14.955559670064208,P6) p(11.139476014789365,15.490834028819084,P7) p(11.639476014789368,16.35685943260352,P8) p(12.319616085893331,15.62377725189068,P9) p(12.614413841900365,16.579336921954884,P10) p(13.294553913004327,15.846254741242046,P11) p(10.25357569272205,15.954709679571554,P12) p(11.82448994880005,17.192541816838517,P13) p(10.110307218494562,16.944393540353637,P14) p(11.03903282076105,16.573625748205036,P15) p(10.895764346533563,17.563309608987115,P16) p(11.681221474572562,18.182225677620597,P17) p(10.151529281779553,15.945243530846291,P18) p(9.85673152577252,14.989683860782083,P19) p(9.176591454668555,15.722766041494923,P20) p(9.757065806355602,17.636675529175438,P21) p(8.492962924152623,16.452596180818198,P22) p(9.466828630512078,16.67972078533518,P23) p(8.783200099996147,17.40955092465845,P24) p(10.001874579613903,18.606246911042582,P25) p(10.719143640464083,17.909450603398017,P26) p(10.963952413722383,18.87902198526516,P27) p(10.246683352872205,19.575818292909727,P28) p(9.173102995256617,15.719514000105383,P29) p(9.316371469484096,14.7298301393233,P30) p(8.38764586721761,15.100597931471906,P31) p(7.858324495259353,17.029281131271247,P32) p(7.4201712007888005,15.3535658539808,P33) p(8.12298518123848,16.064939531371575,P34) p(7.155510514809675,16.31790745388047,P35) p(6.890849828830546,17.282249053780138,P36) p(8.34889680305529,14.9827980618322,P37) p(9.032525333571193,14.252967922508901,P38) p(8.058659627211728,14.025843317991953,P39) p(6.529691189803415,15.315128204046687,P40) p(7.118140785840286,13.686101785315538,P41) p(7.2941753989016505,14.670485749627616,P42) p(6.35365656713613,14.330744228342905,P43) p(5.768192535468597,15.963294694576906,P44) p(6.710270509316981,16.298688628913414,P45) p(5.948771854982163,16.946855119443633,P46) p(5.0066938811337796,16.611461185107125,P47) p(8.092006492199749,13.913226389832491,P48) p(9.059481158628556,13.66025846732359,P49) p(8.35666717817887,12.94888478993282,P50) p(6.393615275270556,13.331542896456169,P51) p(7.7002083818451545,12.194522908130663,P52) p(7.375141226724713,13.140213843194495,P53) p(6.718682430390999,12.38585196139234,P54) p(5.737156478936842,12.577181014654014,P55) p(8.40302236229484,12.905896585521436,P56) p(9.343541203666284,13.245638118197846,P57) p(9.167506580998992,12.261254142494064,P58,nolabel) print(_P58,8.46,12.46) p(9.917792833440846,13.003384737340273,P59) p(9.261334037107128,12.249022855538119,P60) p(10.242859988561287,12.057693802276443,P61,nolabel) print(_P61,9.54,12.25) p(9.085299414439836,11.264638879834337,P62) p(8.26330886245679,11.834140005777568,P63) p(8.181101695897633,10.837524743117843,P64) p(7.359111143914589,11.407025869061075,P65) p(6.548133811425716,11.992103441857545,P66) p(5.635953103954996,11.582315256427076,P67) p(6.4469304364438695,10.997237683630606,P68) p(5.534749728973151,10.587449498200137,P69) p(10.420010380043403,13.092480699568435,P70) p(10.337803213484248,12.09586543690871,P71) p(11.24200093202645,12.522979573625205,P72,nolabel) print(_P72,10.54,12.72) p(10.662870368604692,11.150174501844878,P73) p(9.666930409984573,11.240194493089916,P74) p(10.086940790027976,10.332675192658353,P75) p(10.865156692559635,13.498498357610591,P76) p(11.285167072603038,12.590979057179027,P77) p(11.861096651179754,13.408478366365554,P78) p(12.107157624586081,12.021477931235793,P79) p(11.240266115957414,11.522981078419736,P80) p(12.105422808517046,11.021479436030322,P81) p(11.865156692559633,13.498498357610591,P82) p(11.866891508628663,14.498496852816064,P83) p(12.861096651179754,13.408478366365555,P84) p(12.361096651179755,12.542452962581116,P85) p(13.361096651179755,12.54245296258112,P86) p(12.861096651179757,11.676427558796679,P87) p(12.711569767410996,15.033771211570942,P88) p(12.75279183069598,14.034621202063597,P89) p(13.597470089478312,14.569895560818477,P90) p(13.638692152763296,13.570745551311132,P91) p(14.483370411545629,14.10601991006601,P92) nolabel() s(P1,P2) s(P1,P3) s(P3,P4) s(P2,P4) s(P3,P5) s(P4,P5) s(P1,P6) s(P6,P7) s(P3,P7) s(P7,P8) s(P5,P8) s(P8,P9) s(P5,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P6,P12) s(P7,P12) s(P15,P13) s(P16,P13) s(P10,P13) s(P12,P14) s(P12,P15) s(P14,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P13,P17) s(P26,P17) s(P27,P17) s(P6,P18) s(P14,P18) s(P1,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P23,P21) s(P24,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P21,P25) s(P21,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P19,P29) s(P22,P29) s(P1,P30) s(P29,P30) s(P30,P31) s(P29,P31) s(P34,P32) s(P35,P32) s(P24,P32) s(P31,P33) s(P31,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P30,P37) s(P33,P37) s(P1,P38) s(P37,P38) s(P38,P39) s(P37,P39) s(P42,P40) s(P43,P40) s(P39,P41) s(P39,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P40,P44) s(P40,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P38,P48) s(P41,P48) s(P1,P49) s(P48,P49) s(P49,P50) s(P48,P50) s(P53,P51) s(P54,P51) s(P43,P51) s(P50,P52) s(P50,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P51,P55) s(P54,P55) s(P49,P56) s(P52,P56) s(P1,P57) s(P56,P57) s(P57,P58) s(P56,P58) s(P1,P59) s(P59,P60) s(P57,P60) s(P59,P61) s(P60,P61) s(P60,P62) s(P58,P62) s(P62,P63) s(P58,P63) s(P62,P64) s(P63,P64) s(P64,P65) s(P63,P65) s(P65,P66) s(P55,P66) s(P66,P67) s(P55,P67) s(P66,P68) s(P67,P68) s(P68,P69) s(P67,P69) s(P1,P70) s(P70,P71) s(P59,P71) s(P70,P72) s(P71,P72) s(P71,P73) s(P61,P73) s(P73,P74) s(P61,P74) s(P73,P75) s(P74,P75) s(P1,P76) s(P76,P77) s(P70,P77) s(P76,P78) s(P77,P78) s(P77,P79) s(P72,P79) s(P79,P80) s(P72,P80) s(P79,P81) s(P80,P81) s(P2,P82) s(P76,P82) s(P2,P83) s(P82,P83) s(P82,P84) s(P78,P84) s(P84,P85) s(P78,P85) s(P84,P86) s(P85,P86) s(P86,P87) s(P85,P87) s(P4,P88) s(P83,P88) s(P88,P89) s(P83,P89) s(P88,P90) s(P89,P90) s(P90,P91) s(P89,P91) s(P90,P92) s(P91,P92) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) color(#008000) m(P2,P1,MA11) m(P1,P3,MB11) b(P1,MA11,MB11) color(#FFA500) m(P57,P1,MA12) m(P1,P59,MB12) b(P1,MA12,MB12) color(#EE82EE) m(P59,P1,MA13) m(P1,P70,MB13) f(P1,MA13,MB13) color(#00FFFF) m(P70,P1,MA14) m(P1,P76,MB14) b(P1,MA14,MB14) pen(2) print(min=0.9999999870952145,5.01,20.476) print(max=1.0000000000000886,5.01,20.176) color(blue) color(orange) color(red) \geooff \geoprint() Den Graph habe ich von P1 bis P57 unverändert aus #803-2 übernommen, danach ergeben sich noch drei veränderliche Winkel, weil mehrere Randdreiecke geöffnet sind. Die Parallelität gilt aber für beliebige Winkeleinstellungen und gilt auch in anderen Speichen, zum Beispiel P74-P73 parallel P82-P84.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1185, eingetragen 2018-05-12

http://mathworld.wolfram.com/deGreyGraph.html kein streichholzgraph, aber wer versteht den aufbau dieses 5-farb-knoten-beweis-einheitslängen-graphes mit 1581 knoten? https://arxiv.org/pdf/1804.02385.pdf haribo [Die Antwort wurde nach Beitrag No.1183 begonnen.]


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1186, vom Themenstarter, eingetragen 2018-05-12

\quoteon(2018-05-12 06:42 - haribo in Beitrag No. 1185) http://mathworld.wolfram.com/deGreyGraph.html kein streichholzgraph, aber wer versteht den aufbau dieses 5-farb-knoten-beweis-einheitslängen-graphes mit 1581 knoten? https://arxiv.org/pdf/1804.02385.pdf \quoteoff Da muss man wohl oder übel das Paper durcharbeiten. Könnte aber eine interessante Aufgabe für uns sein einen kleineren Graphen zu finden oder sogar einen der 6 Farben benötigt.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1187, eingetragen 2018-05-13

\quoteon(2018-05-12 23:25 - Slash in


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1188, eingetragen 2018-05-13

\quoteon(2018-05-13 08:11 - haribo in Beitrag No. 1187) was wir aber mal machen sollten ist: alle unsere 4/n´s auf ihre cromatierungs eigenschaften untersuchen, wäre ja blöd wenn wir da versehentlich einen 5-coloristen schon hätten... haribo \quoteoff also harborth; 4/6 (somit auch 4/5); und 4/8 sind minimal dreifärbbar http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb1.png bei letzterem lernt man das ein kite drei verschiedene eckfarben hat, daraus folgt zwingend dass ein doppelkite in dreifärbung gleichfarbige flügelspitzen hat und daraus ergibt sich dass der 4/10er minimal vierfärbbar ist! dat is immerhin ein ergebnis auf die schnelle... http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb2.PNG haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1189, vom Themenstarter, eingetragen 2018-05-13

\quoteon(2018-05-13 08:11 - haribo in Beitrag No. 1187) \quoteon(2018-05-12 23:25 - Slash in


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1190, vom Themenstarter, eingetragen 2018-05-13

Wohl noch besser geeignet sind die minimalen n-reguläre Einheitsdistanz-Graphen, siehe hier. Die kann man so gut überlagern, da wird eine Moser-Spindel neidisch. Ich kann mir aber nicht vorstellen, dass mit diesen Graphen bisher keine Versuche unternommen worden sind. Ist eben ein neues Gebiet für uns.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1191, eingetragen 2018-05-13

auch ohne echten beweis, aber mit drei beispielen (harborth; 114er;120er), scheint ein 4/4er immer mit drei farben auszukommen! die überlagerung vom 114er und 120er kommt dann immer noch mit drei farben aus... (evtl liegen knoten unzulässig auf hölzern?) ganz so einfach ist es also nicht http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb3.PNG [Die Antwort wurde nach Beitrag No.1189 begonnen.]


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1192, vom Themenstarter, eingetragen 2018-05-13

Das sind jetzt natürlich alles nur Mutmaßungen, aber ich glaube man braucht zwingend 6er Knoten für eine 5-färbbarkeit, so das die SHG nicht wirklich weiterhelfen. Aber der mimimale 5-reguläre Einheitsdistanz-Graph (5-EDG) ist hoch flexibel, und das ist eine Moserspindel nicht. Man könnte versuchen einige dieser Graphen so zu kombinieren, das auch außen viele zusätzliche 5er und 6er Knoten möglich sind. Ich habe de Greys Paper nur überflogen, doch ich denke sein Beweis ist mit der Konstruktion des Harborthgraphen vergleichbar, in dem Sinne, dass er auf Symmetrie aufbaut. Sein Graph wird deshalb so groß, da er nicht felxibel ist und erst in dieser Größe entsprechende Knotenüberlagerungen möglich sind. Das sieht man in Fig.4 sehr gut.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1193, eingetragen 2018-05-14

klein+beweglich+mindestens vierfarbig wäre diese erweiterte moserspindel http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-vierfarb1.png aber was genau macht de grey dann damit? wie zwingt er diesen vierfarbling zu einem fünf-coloristen?


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1194, eingetragen 2018-05-14

derart zusammengeklappt wirds ein 3-4-5er zwar wieder starr aber immer noch ein vierfarbling, und mit 15 hölzern somit vermutlich der kleinste streichholz-vierfarbling? http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-vierfarb2.png guten morgen slash, by this way


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1195, eingetragen 2018-05-14

\quoteon(2018-05-13 19:47 - Slash in Beitrag No. 1189) ...Hier mal ein paar Beispiele. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4-reg_berlagerung.png Bei mehreren (4;6), (4;7) und (4;8) sehe ich das meiste Potenzial, da sie sich mit vielen Knoten überlagern lassen und nicht zu groß und sehr symmetrisch sind. Inwieweit Stefan hierbei mit seinem Programm helfen kann, kann ich nicht beurteilen. Wahrscheinlich geht es wohl gar nicht oder nur mit vielen mühseligen Änderungen, da ja Überschneidungen erlaubt sind. \quoteoff Bei diesen acos(1/4)-Graphen (das waren die Graphen, wo sich die Punktkoordinaten aus einfachen, nicht ineinandergeschachtelten Wurzelausdrücken darstellen lassen) wäre es mit dem Streichholzprogramm möglich, das Zusammenfallen der Knotenpunkte exakt zu beweisen, falls es erforderlich wäre. Bei diesen Graphen liegen die Knotenpunkte auch in einem gewissen "Raster", so dass man schon vorher beim näherungsweisen Übereinanderlegen davon ausgehen kann, dass sehr nahe beieinanderliegende Knoten zusammenfallen.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1196, eingetragen 2018-05-14

also als einfache verschiebung hab ich hierfür wieder ne dreifarb-variante gefunden http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb4.PNG das überprüfen kann einen direkt in eine wahnsinnigkeit treiben, aber ich finde grad keinen fehler mehr... dafür könnte ich aber etliche weitere linien einfügen (grüne doppellinien) die derzeit zumindest zu einer vierfarbigkeit führen würden...


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1197, vom Themenstarter, eingetragen 2018-05-15

Ich habe es bis jetzt nicht geschafft diesen Graphen mit nur 4 Farben zu färben. Das muss aber wohl gehen. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_7-regmit54.png Es könnte aber sein, dass er die 4 Farben zwingend an den äußeren 11 Knoten benötigt. Das könnte interessant sein, wenn man mehrere davon verbindet. Am besten eine ungerade Anzahl. Der Graph ist flexibel. Mit der hier gezeigten Symmetrie lassen sich 6 Kopien als Ring anordnen. Das ein paar Kanten nahe beieinanderliegen, muss man in Kauf nehmen. Das ist hier schon die günstigste Anordnung. EDIT: Kommt mit nur 4 Farben aus und auch 3 für die äußeren 11 Knoten. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4farb_7er_54.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1198, vom Themenstarter, eingetragen 2018-05-15

Der Slash Monster Graph http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_slash_monster_graph_3.png Ein EDG mit 355 Knoten der Grade 3;5;7;8;12;13;15. (wenn ich mich nicht verzählt habe ;-) ) Die Winkel sind übrigens alle Vielfache von 10 Grad, also 30, 40, 50, etc. Die Komplexität kann man natürlich durch Rotation noch auf die Höhe treiben und dann behaupten er bräuchte 7 Farben. :-P


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.1199, eingetragen 2018-05-15

deine edit, die hatte ich nicht gesehen... meine 4-farb lösung is wohl noch symetrischer zur west-ost-achse, schwarz und blau jeweils paarweise vertauscht; rot und grün gespiegelt http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-vierfarb3.png haribo


   Profil
-->> Fortsetzung auf der nächsten Seite -->>
Seite 30Gehe zur Seite: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62  

Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]