|
Autor |
Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5 |
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1160, vom Themenstarter, eingetragen 2018-04-22
|
\quoteon(2018-04-22 07:26 - haribo in Beitrag No. 1157)
\quoteon(2018-04-22 04:06 - Slash in Beitrag No. 1155)
Ein paar Versuche.
\geo
ebene(552.71,546.71)
x(7.51,14.76)
y(8.45,15.63)
form(.)
#//Eingabe war:
#
#No.528-3: 4/4 fast mit 108
#
#
#
#
#P[1]=[-189.94515907342895,126.52105737164766];
#P[2]=[-158.66288999063147,57.06840251935653]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15);
#Q(22,12,14,ab(4,5,[1,3]),D);
#A(20,23,ab(20,23,[1,25],"gespiegelt"));
#
#N(50,13,21); N(51,45,38); N(52,48,25);
#N(49,19,44);
#
#//A(51,39); A(21,49); A(45,49);
#N(53,21,49); N(54,49,45); A(50,53); A(51,54);
#R(50,53); N(55,50,53); N(56,54,51); R(55,56); A(55,56);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.506381850598322,11.660980498173515,P1)
p(7.91705846020423,10.749199426686179,P2)
p(8.501345725999105,11.560746339088627,P3)
p(8.912022335605014,10.648965267601291,P4)
p(8.327735069810139,9.837418355198842,P5)
p(9.496309601399888,11.460512180003741,P6)
p(8.506360474371549,11.667518999270987,P7)
p(8.000708654431852,12.530256640151268,P8)
p(9.00068727820508,12.53679514124874,P9)
p(8.495035458265383,13.399532782129022,P10)
p(9.49501408203861,13.406071283226494,P11)
p(8.989362262098913,14.268808924106775,P12)
p(9.177917971347915,12.408471445960274,P13)
p(10.148522373898254,12.649151926576994,P14)
p(9.171335817933919,10.374389283429597,P15)
p(9.214565908813574,9.375324140787468,P16)
p(10.058166656937354,9.912295069018223,P17)
p(10.101396747817008,8.913229926376093,P18)
p(10.944997495940788,9.450200854606848,P19)
p(10.988227586820441,8.45113571196472,P20)
p(10.12307324235763,10.68130274835305,P21)
p(9.64287055395856,13.511889567457278,P22)
p(10.953893336907836,14.643799132125734,P23)
p(9.971627799503374,14.456304028116254,P24)
p(10.62513609136302,13.699384671466756,P25)
p(14.434267400884602,11.699391071736269,P26)
p(14.033726181854735,10.783112330381833,P27)
p(13.440476124409098,11.588130572001702,P28)
p(13.03993490537923,10.671851830647267,P29)
p(13.63318496282487,9.866833589027397,P30)
p(12.446684847933593,11.476870072267136,P31)
p(13.434277752228844,11.694841062797929,P32)
p(13.930332153228676,12.56313250652446,P33)
p(12.930342504572922,12.558582497586118,P34)
p(13.42639690557275,13.426873941312648,P35)
p(12.426407256916992,13.422323932374308,P36)
p(12.922461657916825,14.290615376100838,P37)
p(12.75454560456243,12.428301496242568,P38)
p(11.781332124203969,12.658204783840999,P39)
p(12.78368195828414,10.394417369365906,P40)
p(12.751532504156728,9.394934296673172,P41)
p(11.902029499615997,9.922518077011679,P42)
p(11.869880045488584,8.923035004318946,P43)
p(11.020377040947855,9.450618784657454,P44)
p(11.828599881969561,10.690758772991238,P45)
p(12.277386525203795,13.526496227567531,P46)
p(11.93817749741233,14.467207254113285,P47)
p(11.293102364699301,13.703088105579976,P48)
p(10.9771469500682,10.449683927299583,P49)
p(9.804681612305657,11.629262014309582,P50)
p(12.1364606385984,11.64219019696667,P51)
p(10.964345119154483,12.758673644921,P52)
p(10.784834233397518,11.43101762131337,P53)
p(11.158566477167732,11.43308972105259,P54)
p(10.466442603345545,12.3789768872699,P55)
p(11.466427233796571,12.384521145028023,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20)
s(P6,P21) s(P15,P21)
s(P24,P22) s(P25,P22) s(P14,P22)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37)
s(P31,P38) s(P32,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P31,P45) s(P40,P45)
s(P39,P46) s(P47,P46) s(P48,P46)
s(P23,P47)
s(P23,P48) s(P47,P48)
s(P19,P49) s(P44,P49)
s(P13,P50) s(P21,P50) s(P53,P50)
s(P45,P51) s(P38,P51) s(P54,P51)
s(P48,P52) s(P25,P52)
s(P21,P53) s(P49,P53)
s(P49,P54) s(P45,P54)
s(P50,P55) s(P53,P55) s(P56,P55)
s(P54,P56) s(P51,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P50,P53) abstand(P50,P53,A0) print(abs(P50,P53):,7.51,15.628) print(A0,8.36,15.628)
color(red) s(P55,P56) abstand(P55,P56,A1) print(abs(P55,P56):,7.51,15.431) print(A1,8.36,15.431)
print(min=0.9999999999661818,7.51,15.235)
print(max=1.0000000000000022,7.51,15.038)
\geooff
\geoprint()
\quoteoff
dieser 2-3-4er sieht sehr gut aus, einfach symetrisch mit viereinhalb verbindungen über die symetrieachse,
ich hoffe ich hab den richtigen ausgewählt
haribo
grus haribo
\quoteoff
Daraus kann man auch einen 4/2 machen. Die 2er Knoten liegen knapp unter den Kanten.
\geo
ebene(572.77,520.97)
x(7.5,15.02)
y(8.45,15.29)
form(.)
#//Eingabe war:
#
#No.528-3: 4/4 fast mit 108
#
#
#
#
#P[1]=[-190.06686671111262,115.1971958594123];
#P[2]=[-157.57724610878506,46.30106985717008]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15);
#Q(22,12,14,ab(4,5,[1,3]),D);
#A(20,23,ab(20,23,[1,25],"gespiegelt"));
#
#N(50,13,21); N(51,45,38); N(52,48,25);
#N(49,19,44);
#
#//A(51,39); A(21,49); A(45,49);
#N(53,21,49); N(54,49,45); A(50,53); A(51,54);
#R(50,53); N(55,50,53); N(56,54,51); R(14,52); R(39,52); A(14,52); A(39,52);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.504784061132513,11.512319765117901,P1)
p(7.93131089654304,10.607844857409189,P2)
p(8.501345725999105,11.429465386124846,P3)
p(8.927872561409632,10.524990478416134,P4)
p(8.357837731953566,9.703369949700479,P5)
p(9.497907390865699,11.34661100713179,P6)
p(8.50383819597229,11.468836024943615,P7)
p(8.041969152194895,12.355784155557888,P8)
p(9.041023287034673,12.312300415383604,P9)
p(8.579154243257276,13.199248545997877,P10)
p(9.578208378097052,13.15576480582359,P11)
p(9.116339334319658,14.042712936437864,P12)
p(9.106503578354468,12.26683003299013,P13)
p(10.105727429193417,12.30622160460873,P14)
p(9.174138800735673,10.280996615554118,P15)
p(9.266227632877177,9.285245819925606,P16)
p(10.082528701659282,9.862872485779246,P17)
p(10.174617533800786,8.867121690150734,P18)
p(10.990918602582893,9.444748356004373,P19)
p(11.083007434724397,8.448997560375863,P20)
p(10.130758183499855,10.572337234966984,P21)
p(9.643858385416024,13.193169735223005,P22)
p(11.115310373144869,14.106859533682435,P23)
p(10.115824853732263,14.07478623506015,P24)
p(10.64334390482863,13.225243033845292,P25)
p(14.695975796101173,11.471262449672514,P26)
p(14.25914910423884,10.571716763630604,P27)
p(13.698533034193012,11.399792618855457,P28)
p(13.26170634233068,10.500246932813548,P29)
p(13.822322412376508,9.672171077588695,P30)
p(12.70109027228485,11.3283227880384,P31)
p(13.696490276688419,11.439189151054912,P32)
p(14.168456745008786,12.320805650889845,P33)
p(13.168971225596032,12.288732352272241,P34)
p(13.640937693916399,13.170348852107175,P35)
p(12.641452174503645,13.138275553489573,P36)
p(13.113418642824016,14.019892053324503,P37)
p(13.102976003742118,12.244012614808938,P38)
p(12.104267083437318,12.294811163052097,P39)
p(13.012670136386932,10.259080944591199,P40)
p(12.909217419825804,9.264446571851083,P41)
p(12.099565143836227,9.851356438853589,P42)
p(11.9961124272751,8.856722066113473,P43)
p(11.186460151285523,9.443631933115977,P44)
p(12.059439763459775,10.561325640374523,P45)
p(12.576233551757685,13.176427662887031,P46)
p(12.114364507984448,14.063375793503468,P47)
p(11.577179416918119,13.219911403065998,P48)
p(11.094371319144019,10.43938272874449,P49)
p(9.739354370988625,11.492556260825324,P50)
p(12.461325494917045,11.47701546714506,P51)
p(11.105212948601874,12.338294903228856,P52)
p(10.731989330681397,11.371412392670416,P53)
p(11.467371977220104,11.367213806621711,P54)
p(10.340585518170167,12.291631418528759,P55)
p(11.869257708677374,12.282903633392248,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14) s(P52,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20)
s(P6,P21) s(P15,P21)
s(P24,P22) s(P25,P22) s(P14,P22)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37)
s(P31,P38) s(P32,P38)
s(P36,P39) s(P38,P39) s(P52,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P31,P45) s(P40,P45)
s(P39,P46) s(P47,P46) s(P48,P46)
s(P23,P47)
s(P23,P48) s(P47,P48)
s(P19,P49) s(P44,P49)
s(P13,P50) s(P21,P50) s(P53,P50)
s(P45,P51) s(P38,P51) s(P54,P51)
s(P48,P52) s(P25,P52)
s(P21,P53) s(P49,P53)
s(P49,P54) s(P45,P54)
s(P50,P55) s(P53,P55)
s(P54,P56) s(P51,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P50,P53) abstand(P50,P53,A0) print(abs(P50,P53):,7.5,15.288) print(A0,8.36,15.288)
color(red) s(P14,P52) abstand(P14,P52,A1) print(abs(P14,P52):,7.5,15.091) print(A1,8.36,15.091)
color(red) s(P39,P52) abstand(P39,P52,A2) print(abs(P39,P52):,7.5,14.895) print(A2,8.36,14.895)
print(min=0.9999999999957766,7.5,14.698)
print(max=1.0000000000000053,7.5,14.501)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1161, vom Themenstarter, eingetragen 2018-04-22
|
Fast ein 4/6 mit 97 Kanten.
\geo
ebene(488.31,517.59)
x(8.62,15.03)
y(9.12,15.91)
form(.)
#//Eingabe war:
#
#No.528-3: 4/4 fast mit 108
#
#
#
#
#P[1]=[-105.3866088864857,175.8765082773407];
#P[2]=[-93.1459270831925,100.69394823852227]; D=ab(1,2);
#A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15);
#N(22,13,21);
#Q(26,12,14,ab(4,5,[2,2]),D);
#
#A(20,27,ab(20,27,[1,26],"gespiegelt"));
#N(51,41,14);
#R(26,49); A(26,49); R(22,51); A(22,51); A(48,51);
#N(52,19,46); R(21,52); R(22,52); A(21,52); A(22,52); A(47,52); A(48,52);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(8.616474555576083,12.308923561059169,P1)
p(8.777171392782359,11.32191974824389,P2)
p(9.551593349709353,11.954589197979976,P3)
p(9.712290186915629,10.967585385164696,P4)
p(8.937868229988634,10.33491593542861,P5)
p(10.486712143842624,11.600254834900781,P6)
p(9.592907684904343,12.093103395295586,P7)
p(9.291596866440445,13.046629373272388,P8)
p(10.268029995768705,12.830809207508805,P9)
p(9.966719177304807,13.784335185485606,P10)
p(10.943152306633067,13.568515019722025,P11)
p(10.641841488169167,14.522040997698825,P12)
p(10.45505930139944,12.599753758144457,P13)
p(11.449386435274052,12.70611893496798,P14)
p(9.745757858594198,10.924249752540407,P15)
p(9.852191101219486,9.929929902158113,P16)
p(10.66008072982505,10.519263719269912,P17)
p(10.766513972450337,9.524943868887618,P18)
p(11.574403601055902,10.114277685999417,P19)
p(11.680836843681188,9.119957835617123,P20)
p(10.699341646423784,10.623121939828629,P21)
p(10.667688803980596,11.622620863072303,P22)
p(11.14807561681015,13.659644912944781,P26)
p(11.641815470010899,14.529254570987574,P27)
p(14.69887374080855,12.352800534911772,P28)
p(14.552432905705423,11.363581104343256,P29)
p(13.768964166467475,11.98501230297823,P30)
p(13.622523331364349,10.995792872409714,P31)
p(14.405992070602295,10.374361673774741,P32)
p(12.8390545921264,11.617224071044689,P33)
p(13.72565581827602,12.122916052483166,P34)
p(14.013178977823276,13.080689738028955,P35)
p(13.039961055290746,12.850805255600347,P36)
p(13.327484214838,13.808578941146136,P37)
p(12.354266292305466,13.57869445871753,P38)
p(12.641789451852727,14.53646814426332,P39)
p(12.85628459814079,12.61707562347272,P40)
p(11.860526439093416,12.70908480068116,P41)
p(13.58968433596571,10.951978919338346,P42)
p(13.497606994961927,9.956227061055534,P43)
p(12.681299260325341,10.533844306619141,P44)
p(12.589221919321558,9.538092448336329,P45)
p(11.772914184684971,10.115709693899934,P46)
p(12.640544090875515,10.637125310259265,P47)
p(12.65777409688991,11.636976862687295,P48)
p(12.148049598640675,13.666858486226946,P49)
p(11.662015937848881,11.72898603989445,P51)
p(11.666480942059685,11.110029544282227,P52)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P27,P12) s(P26,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20) s(P45,P20) s(P46,P20)
s(P6,P21) s(P15,P21) s(P52,P21)
s(P13,P22) s(P21,P22) s(P51,P22) s(P52,P22)
s(P27,P26) s(P14,P26) s(P49,P26)
s(P28,P29)
s(P28,P30) s(P29,P30)
s(P29,P31) s(P30,P31)
s(P29,P32) s(P31,P32)
s(P30,P33) s(P31,P33)
s(P28,P34)
s(P28,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P49,P39) s(P27,P39)
s(P33,P40) s(P34,P40)
s(P38,P41) s(P40,P41)
s(P32,P42)
s(P32,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P33,P47) s(P42,P47) s(P52,P47)
s(P40,P48) s(P47,P48) s(P51,P48) s(P52,P48)
s(P41,P49) s(P27,P49)
s(P41,P51) s(P14,P51)
s(P19,P52) s(P46,P52)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P26,P49) abstand(P26,P49,A0) print(abs(P26,P49):,8.62,15.915) print(A0,9.47,15.915)
color(red) s(P22,P51) abstand(P22,P51,A1) print(abs(P22,P51):,8.62,15.718) print(A1,9.47,15.718)
color(red) s(P21,P52) abstand(P21,P52,A2) print(abs(P21,P52):,8.62,15.521) print(A2,9.47,15.521)
color(red) s(P22,P52) abstand(P22,P52,A3) print(abs(P22,P52):,8.62,15.324) print(A3,9.47,15.324)
print(min=0.9999999999887468,8.62,15.127)
print(max=1.122646692057456,8.62,14.93)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1162, vom Themenstarter, eingetragen 2018-04-24
|
Fast 108er. 2 Kanten falsch.
\geo
ebene(546.32,486)
x(7.53,14.7)
y(9.09,15.47)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-187.98588305500536,40.13927548390267];
#P[2]=[-134.83595866953237,-14.42570561953535]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#
#N(24,17,18); N(25,24,18);
#
#A(25,21,ab(21,25,[1,25]));
#
#N(49,24,47); N(50,48,23); N(51,13,19); N(52,38,44);
#R(14,51); A(14,51); A(39,52);
#
#N(53,19,49); N(54,44,50); R(51,53); A(51,53); A(52,54);
#R(50,53); A(50,53); A(49,54);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.532103412880099,10.526952233680248,P1)
p(8.229860685207878,9.810617961909243,P2)
p(8.501345725999105,10.77306062130594,P3)
p(9.199102998326886,10.056726349534934,P4)
p(8.92761795753566,9.094283690138237,P5)
p(9.47058803911811,11.019169008931632,P6)
p(8.483811282630139,10.83395733242592,P7)
p(7.742083133150018,11.50465797523819,P8)
p(8.69379100290006,11.811663073983862,P9)
p(7.952062853419937,12.482363716796133,P10)
p(8.903770723169979,12.789368815541803,P11)
p(8.162042573689858,13.460069458354075,P12)
p(8.817655925095789,11.776585442921771,P13)
p(9.718844792943075,12.210012050859177,P14)
p(9.427765234167426,9.960224047020759,P15)
p(9.927617943073969,9.094113621382785,P16)
p(10.427765219705734,9.960053978265305,P17)
p(10.927617928612277,9.093943552627334,P18)
p(10.296540926191666,10.455429859736846,P19)
p(8.977116643462955,12.880712693671448,P20)
p(9.98059199560199,14.292462394450393,P21)
p(9.071317284645923,13.876265926402233,P22)
p(9.886391354419022,13.296909161719608,P23)
p(11.427765205244043,9.959883909509854,P24)
p(11.927617914150586,9.09377348387188,P25)
p(14.376106496872476,12.859283644642026,P26)
p(13.678349224544696,13.57561791641303,P27)
p(13.40686418375347,12.613175257016334,P28)
p(12.70910691142569,13.329509528787339,P29)
p(12.980591952216914,14.291952188184034,P30)
p(12.437621870634462,12.36706686939064,P31)
p(13.424398627122436,12.552278545896353,P32)
p(14.166126776602557,11.881577903084082,P33)
p(13.214418906852517,11.57457280433841,P34)
p(13.956147056332638,10.90387216152614,P35)
p(13.004439186582598,10.596867062780468,P36)
p(13.746167336062719,9.926166419968197,P37)
p(13.090553984656786,11.609650435400502,P38)
p(12.1893651168095,11.176223827463096,P39)
p(12.48044467558515,13.426011831301516,P40)
p(11.980591966678606,14.292122256939486,P41)
p(11.48044469004684,13.426181900056966,P42)
p(10.980591981140298,14.29229232569494,P43)
p(11.611668983560909,12.930806018585425,P44)
p(12.931093266289622,10.505523184650823,P45)
p(12.836892625106652,9.509969951920038,P46)
p(12.021818555333555,10.089326716602665,P47)
p(10.480444704508528,13.426351968812417,P48)
p(11.521965846427012,10.955437142240639,P49)
p(10.38624406332556,12.430798736081632,P50)
p(9.643608812169344,11.212846293726987,P51)
p(12.264601097583231,12.173389584595284,P52)
p(10.626016742259793,11.399593874421923,P53)
p(11.28219316749278,11.98664200390035,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14) s(P51,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38)
s(P36,P39) s(P38,P39) s(P52,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47)
s(P42,P48) s(P43,P48)
s(P24,P49) s(P47,P49) s(P54,P49)
s(P48,P50) s(P23,P50) s(P53,P50)
s(P13,P51) s(P19,P51) s(P53,P51)
s(P38,P52) s(P44,P52) s(P54,P52)
s(P19,P53) s(P49,P53)
s(P44,P54) s(P50,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P14,P51) abstand(P14,P51,A0) print(abs(P14,P51):,7.53,15.474) print(A0,8.39,15.474)
color(red) s(P51,P53) abstand(P51,P53,A1) print(abs(P51,P53):,7.53,15.277) print(A1,8.39,15.277)
color(red) s(P50,P53) abstand(P50,P53,A2) print(abs(P50,P53):,7.53,15.08) print(A2,8.39,15.08)
print(min=0.9999999999999973,7.53,14.883)
print(max=1.0587135610135174,7.53,14.686)
\geooff
\geoprint()
Genauer mit drittem Winkel.
\geo
ebene(555.57,493.71)
x(7.52,14.82)
y(8.53,15.01)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#
#P[1]=[-188.59515823565604,2.727312112499522];
#P[2]=[-137.38190172614722,-53.659335089575805]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14);
#N(19,16,17); N(20,19,17); N(21,13,18); N(22,13,21); N(23,21,18);
#M(24,20,19,orange_angle); N(25,24,20); N(26,24,25); N(27,26,25);
#A(27,12,ab(12,27,[1,27]));
#N(53,45,50); N(54,19,24);
#
#R(23,54); A(49,53);
#R(26,48); A(22,52);
#R(23,53); A(49,54);
#R(11,22); A(38,48);
#
#A(11,22); A(26,48); A(54,23); A(23,53);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.524104790246802,10.03580441331586,P1)
p(8.19643730214149,9.295555135403763,P2)
p(8.501345725999107,10.247936809450815,P3)
p(9.173678237893796,9.507687531538718,P4)
p(8.868769814036177,8.555305857491668,P5)
p(9.478586661751413,10.46006920558577,P6)
p(8.48697869797696,10.305755960472853,P7)
p(7.771756846483012,11.004653451629867,P8)
p(8.73463075421317,11.274604998786861,P9)
p(8.01940890271922,11.973502489943874,P10)
p(8.98228281044938,12.243454037100868,P11)
p(8.267060958955431,12.94235152825788,P12)
p(8.849772977477695,11.237625216732305,P13)
p(9.376798239699795,9.416646161156686,P14)
p(9.868726611145295,8.546010486854868,P15)
p(10.376755036808913,9.407350790519887,P16)
p(10.86868340825441,8.536715116218069,P17)
p(10.27527154813633,9.855674308348993,P18)
p(11.37671183391803,9.398055419883088,P19)
p(11.868640205363528,8.527419745581271,P20)
p(9.646457863862608,10.633230319495526,P21)
p(9.771536755594887,11.62537711853437,P22)
p(10.634247964517664,10.789020938750589,P23)
p(12.040146046094723,9.51260284866165,P24)
p(12.807586720375918,8.871482882150838,P25)
p(12.979092561107112,9.856665985231219,P26)
p(13.746533235388307,9.215546018720406,P27)
p(14.48948940409694,12.122093133662426,P28)
p(13.817156892202249,12.862342411574524,P29)
p(13.512248468344632,11.909960737527474,P30)
p(12.839915956449946,12.65021001543957,P31)
p(13.144824380307563,13.60259168948662,P32)
p(12.535007532592324,11.697828341392519,P33)
p(13.52661549636678,11.852141586505434,P34)
p(14.241837347860729,11.15324409534842,P35)
p(13.27896344013057,10.883292548191427,P36)
p(13.994185291624518,10.184395057034413,P37)
p(13.031311383894359,9.91444350987742,P38)
p(13.163821216866046,10.920272330245982,P39)
p(12.636795954643944,12.741251385821602,P40)
p(12.144867583198446,13.611887060123419,P41)
p(11.636839157534828,12.750546756458402,P42)
p(11.144910786089328,13.62118243076022,P43)
p(11.738322646207411,12.302223238629296,P44)
p(10.63688236042571,12.759842127095201,P45)
p(10.144953988980213,13.630477801397019,P46)
p(12.36713633048113,11.524667227482762,P47)
p(12.242057438748855,10.532520428443918,P48)
p(11.379346229826076,11.368876608227701,P49)
p(9.973448148249016,12.645294698316636,P50)
p(9.206007473967823,13.28641466482745,P51)
p(9.034501633236626,12.30123156174707,P52)
p(10.465376519694518,11.774659024014822,P53)
p(11.548217674649225,10.383238522963467,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11) s(P22,P11)
s(P10,P12) s(P11,P12) s(P51,P12) s(P52,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20)
s(P13,P21) s(P18,P21)
s(P13,P22) s(P21,P22) s(P52,P22)
s(P21,P23) s(P18,P23) s(P53,P23)
s(P20,P24)
s(P24,P25) s(P20,P25)
s(P24,P26) s(P25,P26) s(P48,P26)
s(P26,P27) s(P25,P27) s(P37,P27) s(P38,P27)
s(P28,P29)
s(P28,P30) s(P29,P30)
s(P29,P31) s(P30,P31)
s(P29,P32) s(P31,P32)
s(P30,P33) s(P31,P33)
s(P28,P34)
s(P28,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38) s(P48,P38)
s(P33,P39) s(P34,P39)
s(P32,P40)
s(P32,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P33,P44) s(P40,P44)
s(P42,P45) s(P43,P45)
s(P43,P46) s(P45,P46)
s(P39,P47) s(P44,P47)
s(P39,P48) s(P47,P48)
s(P44,P49) s(P47,P49) s(P53,P49) s(P54,P49)
s(P46,P50)
s(P46,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P45,P53) s(P50,P53)
s(P19,P54) s(P24,P54) s(P23,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P19,P20,MA12) m(P20,P24,MB12) b(P20,MA12,MB12)
pen(2)
color(red) s(P23,P54) abstand(P23,P54,A0) print(abs(P23,P54):,7.52,15.009) print(A0,8.38,15.009)
color(red) s(P26,P48) abstand(P26,P48,A1) print(abs(P26,P48):,7.52,14.812) print(A1,8.38,14.812)
color(red) s(P23,P53) abstand(P23,P53,A2) print(abs(P23,P53):,7.52,14.615) print(A2,8.38,14.615)
color(red) s(P11,P22) abstand(P11,P22,A3) print(abs(P11,P22):,7.52,14.418) print(A3,8.38,14.418)
print(min=0.999999999999997,7.52,14.221)
print(max=1.0024673895905059,7.52,14.024)
\geooff
\geoprint()
Fast 108er. 2 Kanten falsch.
\geo
ebene(480.94,538.64)
x(7.3,13.61)
y(8.93,16)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-188.86582829005138,34.02891104239396];
#P[2]=[-138.64445449217197,-23.242942767778537]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#
#N(24,17,18); N(25,24,18);
#
#A(25,21,ab(21,25,[1,25]));
#
#N(49,24,47); N(50,48,23); N(51,13,19); N(52,38,44);
#R(51,53); A(51,53); A(52,54);
#
#N(53,50,14); N(54,49,39);
#R(51,54); A(51,54); A(52,53);
#R(19,49); A(19,49); A(50,44);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.520551407978832,10.446734786996519,P1)
p(8.179862389112417,9.694864432376342,P2)
p(8.501345725999112,10.641779668342158,P3)
p(9.160656707132697,9.889909313721981,P4)
p(8.839173370246002,8.942994077756167,P5)
p(9.482140044019392,10.836824549687796,P6)
p(8.346891525267095,11.009906173485588,P7)
p(7.446000739238926,11.443952013978901,P8)
p(8.272340856527189,12.007123400467972,P9)
p(7.371450070499019,12.441169240961283,P10)
p(8.197790187787282,13.004340627450352,P11)
p(7.296899401759113,13.438386467943666,P12)
p(9.037914107277313,11.732739343139508,P13)
p(9.158124046818156,12.725487836180713,P14)
p(9.342036697394537,9.807360015429039,P15)
p(9.839167894010934,8.939684630650405,P16)
p(10.34203122115947,9.804050568323278,P17)
p(10.839162417775865,8.936375183544644,P18)
p(10.258767814021107,10.206864783621612,P19)
p(8.257233260789988,13.15953367667403,P20)
p(8.740220463101396,14.822880712744194,P21)
p(8.018559932430254,14.13063359034393,P22)
p(8.978893791461129,13.851780799074293,P23)
p(11.342025744924403,9.800741121217518,P24)
p(11.839156941540798,8.933065736438884,P25)
p(13.058825996663359,13.309211662186557,P26)
p(12.39951501552978,14.061082016806733,P27)
p(12.078031678643082,13.114166780840918,P28)
p(11.418720697509498,13.866037135461097,P29)
p(11.740204034396195,14.81295237142691,P30)
p(11.097237360622804,12.91912189949528,P31)
p(12.2324858793751,12.746040275697489,P32)
p(13.133376665403269,12.311994435204175,P33)
p(12.307036548115008,11.748823048715106,P34)
p(13.207927334143175,11.314777208221793,P35)
p(12.381587216854914,10.751605821732724,P36)
p(13.282478002883082,10.31755998123941,P37)
p(11.541463297364881,12.02320710604357,P38)
p(11.421253357824042,11.030458613002363,P39)
p(11.237340707247657,13.948586433754038,P40)
p(10.74020951063126,14.81626181853267,P41)
p(10.237346183482726,13.9518958808598,P42)
p(9.74021498686633,14.819571265638434,P43)
p(10.32060959062109,13.549081665561467,P44)
p(12.322144143852206,10.596412772509048,P45)
p(12.56081747221194,9.625312858839147,P46)
p(11.600483613181064,9.904165650108784,P47)
p(9.237351659717817,13.955205327965572,P48)
p(11.103352416564668,10.771841034887418,P49)
p(9.476024988077546,12.984105414295671,P50)
p(9.814541877279028,11.102779577073324,P51)
p(10.764835527363164,12.653166872109752,P52)
p(9.934751816819873,12.095528070114531,P53)
p(10.644625587822327,11.660418379068549,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19) s(P49,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47)
s(P42,P48) s(P43,P48)
s(P24,P49) s(P47,P49)
s(P48,P50) s(P23,P50) s(P44,P50)
s(P13,P51) s(P19,P51) s(P53,P51) s(P54,P51)
s(P38,P52) s(P44,P52) s(P54,P52) s(P53,P52)
s(P50,P53) s(P14,P53)
s(P49,P54) s(P39,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P51,P53) abstand(P51,P53,A0) print(abs(P51,P53):,7.3,16.004) print(A0,8.15,16.004)
color(red) s(P51,P54) abstand(P51,P54,A1) print(abs(P51,P54):,7.3,15.807) print(A1,8.15,15.807)
color(red) s(P19,P49) abstand(P19,P49,A2) print(abs(P19,P49):,7.3,15.611) print(A2,8.15,15.611)
print(min=0.9999999999999775,7.3,15.414)
print(max=1.0161305601880237,7.3,15.217)
\geooff
\geoprint()
Gleicher Graph, andere Kanten eingestellt und noch genauer.
\geo
ebene(486.61,537.41)
x(7.89,14.27)
y(8.42,15.48)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-138.59515823565644,-7.272687887500505];
#P[2]=[-87.38190172614736,-63.65933508957621]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#
#N(24,17,18); N(25,24,18);
#
#A(25,21,ab(21,25,[1,25]));
#
#N(49,19,24); N(50,44,48);
#N(51,50,14); N(53,49,39);
#
#R(23,50); A(23,50); A(47,49);
#
#N(55,51,53); N(56,53,51);
#R(13,56); A(13,56); A(55,38);
#R(19,56); A(19,56); A(55,44);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(8.180509555065711,9.90452346035208,P1)
p(8.852842066960399,9.164274182439982,P2)
p(9.157750490818017,10.116655856487034,P3)
p(9.830083002712705,9.376406578574937,P4)
p(9.525174578855086,8.424024904527887,P5)
p(10.134991426570323,10.328788252621987,P6)
p(8.993347371474414,10.487013532555832,P7)
p(8.08247726328938,10.899706694620564,P8)
p(8.895315079698083,11.482196766824316,P9)
p(7.984444971513049,11.894889928889047,P10)
p(8.797282787921752,12.4773800010928,P11)
p(7.886412679736719,12.890073163157531,P12)
p(9.676363621326242,11.217416710559833,P13)
p(9.76190698093343,12.213751159240154,P14)
p(10.025031355214946,9.290132982730098,P15)
p(10.52517456518105,8.424190277047556,P16)
p(11.02503134154091,9.290298355249769,P17)
p(11.525174551507014,8.424355649567227,P18)
p(10.928076871025274,9.719677853930834,P19)
p(8.851036872748399,12.626444321304884,P20)
p(9.307655421177722,14.297222433811239,P21)
p(8.597034050457221,13.593647798484385,P22)
p(9.5616582434689,13.330018956631738,P23)
p(12.025031327866875,9.290463727769438,P24)
p(12.52517453783298,8.424521022086896,P25)
p(13.652320403944993,12.817219995546056,P26)
p(12.979987892050305,13.557469273458151,P27)
p(12.675079468192685,12.605087599411101,P28)
p(12.002746956298001,13.345336877323199,P29)
p(12.30765538015562,14.297718551370249,P30)
p(11.697838532440377,12.392955203276149,P31)
p(12.839482587536288,12.234729923342302,P32)
p(13.750352695721322,11.822036761277571,P33)
p(12.93751487931262,11.23954668907382,P34)
p(13.848384987497653,10.826853527009089,P35)
p(13.03554717108895,10.244363454805335,P36)
p(13.946417279273984,9.831670292740604,P37)
p(12.15646633768446,11.504326745338302,P38)
p(12.070922978077272,10.507992296657982,P39)
p(11.807798603795757,13.431610473168035,P40)
p(11.30765539382965,14.297553178850578,P41)
p(10.807798617469796,13.431445100648368,P42)
p(10.307655407503692,14.29738780633091,P43)
p(10.904753087985432,13.0020656019673,P44)
p(12.981793086262304,10.095299134593251,P45)
p(13.23579590855348,9.12809565741375,P46)
p(12.2711717155418,9.391724499266397,P47)
p(9.807798631143747,13.43127972812865,P48)
p(11.771028505575641,10.257667204948925,P49)
p(10.061801453435077,12.46407625094919,P50)
p(10.540320176301357,11.585998901357241,P51)
p(11.292509782709304,11.135744554540844,P53)
p(11.378053142316348,12.132079003221175,P55)
p(10.454776816694313,10.58966445267691,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13) s(P56,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19) s(P56,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P50,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47) s(P49,P47)
s(P42,P48) s(P43,P48)
s(P19,P49) s(P24,P49)
s(P44,P50) s(P48,P50)
s(P50,P51) s(P14,P51)
s(P49,P53) s(P39,P53)
s(P51,P55) s(P53,P55) s(P38,P55) s(P44,P55)
s(P53,P56) s(P51,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P23,P50) abstand(P23,P50,A0) print(abs(P23,P50):,7.89,15.479) print(A0,8.74,15.479)
color(red) s(P13,P56) abstand(P13,P56,A1) print(abs(P13,P56):,7.89,15.282) print(A1,8.74,15.282)
color(red) s(P19,P56) abstand(P19,P56,A2) print(abs(P19,P56):,7.89,15.085) print(A2,8.74,15.085)
print(min=0.9903987194193326,7.89,14.888)
print(max=1.000000000000121,7.89,14.692)
\geooff
\geoprint()
Fast 4/6 108er. 3 Knoten treffen sich nicht.
\geo
ebene(559.55,498.16)
x(7.52,14.86)
y(8.54,15.08)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-189.11374108654323,5.3350355762666695];
#P[2]=[-139.8995479172578,-52.804579280527456]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#
#N(24,17,18); N(25,24,18);
#
#A(25,21,ab(25,21,[1,25],"gespiegelt"));
#
#N(49,48,44); N(50,47,23); N(51,13,19); N(52,44,38);
#//R(19,49); A(19,49); A(49,44);
#R(14,51); A(14,51); A(39,52);
#N(53,50,51); N(54,52,50);
#R(53,54); A(53,54);
#
#N(55,19,24); N(56,54,53);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.517296785161296,10.070038855454795,P1)
p(8.163385403022032,9.306776451120086,P2)
p(8.501345725999112,10.247936809450815,P3)
p(9.14743434385985,9.484674405116104,P4)
p(8.809474020882769,8.543514046785376,P5)
p(9.48539466683693,10.425834763446835,P6)
p(8.49131597914803,10.29650432687468,P7)
p(7.808181530825024,11.026796956930895,P8)
p(8.78220072481176,11.253262428350778,P9)
p(8.099066276488754,11.983555058406992,P10)
p(9.073085470475489,12.210020529826876,P11)
p(8.389951022152484,12.94031315988309,P12)
p(8.876717961592577,11.219253107382036,P13)
p(9.82154068459847,11.546835191891752,P14)
p(9.309201460272513,9.409696756333984,P15)
p(9.809473971365573,8.543828744080013,P16)
p(10.30920141075532,9.410011453628622,P17)
p(10.80947392184838,8.544143441374649,P18)
p(10.241500435349952,9.771385325505802,P19)
p(9.138406236275468,12.277127821947971,P20)
p(10.287076936413829,13.573490279998826,P21)
p(9.338513979283157,13.256901719940956,P22)
p(10.08696919340614,12.593716382005839,P23)
p(11.309201361238124,9.410326150923257,P24)
p(11.809473872331184,8.544458138669286,P25)
p(14.534902150652524,12.194419970083466,P26)
p(14.420607479537832,11.200973077615235,P27)
p(13.617404568906984,11.796678612551865,P28)
p(13.503109897792289,10.803231720083634,P29)
p(14.306312808423137,10.207526185147005,P30)
p(12.69990698716144,11.398937255020263,P31)
p(13.598813958187506,11.842654571092075,P32)
p(13.762220282721103,12.829213425445133,P33)
p(12.826132090256083,12.477448026453741,P34)
p(12.989538414789678,13.464006880806801,P35)
p(12.05345022232466,13.11224148181541,P36)
p(12.216856546858255,14.098800336168466,P37)
p(12.766345989103408,12.396727743560294,P38)
p(11.798471246466729,12.145294884597941,P39)
p(13.410086593583856,10.651123493338632,P40)
p(13.474033163059152,9.653170169654432,P41)
p(12.577806948219871,10.09676747784606,P42)
p(12.641753517695168,9.09881415416186,P43)
p(12.433716859050648,10.435016710734397,P44)
p(11.961877571000322,13.131853738951001,P45)
p(11.251966741636037,13.836145308083644,P46)
p(10.996987765778101,12.86919871086618,P47)
p(11.745527302855889,9.542411462353487,P48)
p(11.435405603005455,10.493108328490047,P49)
p(10.796880022770418,11.889424812873193,P50)
p(9.6328237301056,10.564803669441005,P51)
p(12.500155860992614,11.432807199274428,P52)
p(10.569246292112448,10.915677985064889,P53)
p(11.526352647177932,11.205414805461011,P54)
p(11.039981721330983,10.373404956363535,P55)
p(11.298718916519961,10.231667977652707,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14) s(P51,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25) s(P43,P25) s(P48,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38)
s(P36,P39) s(P38,P39) s(P52,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P21,P46)
s(P21,P47) s(P46,P47)
s(P42,P48) s(P43,P48)
s(P48,P49) s(P44,P49)
s(P47,P50) s(P23,P50)
s(P13,P51) s(P19,P51)
s(P44,P52) s(P38,P52)
s(P50,P53) s(P51,P53) s(P54,P53)
s(P52,P54) s(P50,P54)
s(P19,P55) s(P24,P55)
s(P54,P56) s(P53,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P14,P51) abstand(P14,P51,A0) print(abs(P14,P51):,7.52,15.083) print(A0,8.37,15.083)
color(red) s(P53,P54) abstand(P53,P54,A1) print(abs(P53,P54):,7.52,14.886) print(A1,8.37,14.886)
print(min=0.999999999999994,7.52,14.69)
print(max=1.000000000000006,7.52,14.493)
\geooff
\geoprint()
@ Stefan: Ist bei dieser Art Graphen eigentlich noch durch einen dritten einstellbaren Winkel etwas rauszuholen?
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1163, vom Themenstarter, eingetragen 2018-04-24
|
Diesen fast 108er hatten wir schon mal. Aber es ist erstaunlich, dass man ihn, trotz gespiegelter Hülle, bis auf nur "eine Kante" zurechtziehen kann. Wie kann das sein? Man vergleiche hier (der 3.) wo zusätzlich zwei Kanten sehr falsch waren. Es macht wohl viel aus, wo die einstellbaren Winkel sitzen.
EDIT: Problem in #1171 gelöst. Doch zwei Kanten falsch. Parallele Kante P54,P39 wurde nicht gemessen.
\geo
ebene(503.27,581.87)
x(7.79,14.4)
y(8.46,16.1)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-11.957382724521812,-117.24516390610442];
#P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#
#N(24,17,18); N(25,24,18);
#
#A(25,21,ab(21,25,[1,25]));
#
#N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50);
#
#N(51,13,19); N(53,14,51); N(54,51,49);
#R(53,50); A(53,50); A(54,39);
#
#N(55,53,54);
#R(44,55); R(38,55); A(44,55); A(38,55);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.843022340097214,8.460794315201198,P1)
p(10.843013021899832,8.465111294229926,P2)
p(10.33927906749204,9.328970138704351,P3)
p(11.339269749294658,9.333287117733079,P4)
p(11.84300370370245,8.469428273258655,P5)
p(10.835535794886866,10.197145962207504,P6)
p(10.133076730576555,9.417804477406207,P7)
p(9.15925442318748,9.190493866938024,P8)
p(9.449308813666823,10.147504029143033,P9)
p(8.475486506277747,9.92019341867485,P10)
p(8.76554089675709,10.87720358087986,P11)
p(7.791718589368015,10.649892970411676,P12)
p(9.851928310766327,10.377468776022246,P13)
p(9.643711340247506,11.355551437757931,P14)
p(11.610361660292266,9.44199070294527,P15)
p(12.568946452872284,9.157183407683505,P16)
p(12.336304409462102,10.12974583737012,P17)
p(13.29488920204212,9.844938542108354,P18)
p(11.809958518388278,10.421868804669256,P19)
p(8.669889032858432,11.12824082728975,P20)
p(7.841366241053923,12.649276653120445,P21)
p(7.81654241521097,11.649584811766061,P22)
p(8.694712858701386,12.127932668644133,P23)
p(13.062247158631935,10.817500971794969,P24)
p(14.020831951211953,10.532693676533203,P25)
p(12.019175852168663,14.72117601445245,P26)
p(11.019185170366047,14.716859035423722,P27)
p(11.52291912477384,13.853000190949297,P28)
p(10.52292844297122,13.848683211920571,P29)
p(10.01919448856343,14.712542056394996,P30)
p(11.026662397379011,12.984824367446143,P31)
p(11.729121461689322,13.76416585224744,P32)
p(12.702943769078399,13.991476462715625,P33)
p(12.412889378599056,13.034466300510614,P34)
p(13.38671168598813,13.261776910978798,P35)
p(13.096657295508788,12.304766748773787,P36)
p(14.070479602897862,12.53207735924197,P37)
p(12.01026988149955,12.8045015536314,P38)
p(12.218486852018371,11.826418891895717,P39)
p(10.251836531973613,13.739979626708378,P40)
p(9.293251739393593,14.02478692197014,P41)
p(9.525893782803779,13.052224492283528,P42)
p(8.567308990223756,13.337031787545289,P43)
p(10.0522396738776,12.76010152498439,P44)
p(13.192309159407447,12.053729502363899,P45)
p(14.045655777054908,11.532385517887587,P46)
p(13.16748533356449,11.054037661009513,P47)
p(8.79995103363394,12.364469357858674,P48)
p(12.208900540984473,11.338844956271279,P49)
p(9.653297651281404,11.843125373382367,P50)
p(10.82635103426774,10.602191618483998,P51)
p(10.61813406374892,11.580274280219683,P53)
p(11.225293056863935,11.519167770086021,P54)
p(11.017076086345115,12.497250431821707,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P50,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38) s(P55,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44) s(P55,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47) s(P49,P47)
s(P42,P48) s(P43,P48)
s(P19,P49) s(P24,P49)
s(P44,P50) s(P48,P50)
s(P13,P51) s(P19,P51)
s(P14,P53) s(P51,P53) s(P50,P53)
s(P51,P54) s(P49,P54) s(P39,P54)
s(P53,P55) s(P54,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.79,16.1) print(A0,8.65,16.1)
color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.79,15.903) print(A1,8.65,15.903)
color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.79,15.706) print(A2,8.65,15.706)
color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.79,15.509) print(A3,8.65,15.509)
print(min=0.9999999999999951,7.79,15.312)
print(max=1.0396331884787964,7.79,15.115)
\geooff
\geoprint()
Dasselbe hier und hier (der 1.). Gleicher Graph, aber beim alten zusätzlich zwei sehr falsche Kanten.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1164, eingetragen 2018-04-24
|
diesen 108er müssen wir noch etwas weiter versuchen
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-108-versuch.png
ich vermute die beiden winkel hängen zusammen, jedenfals wenn ich die roten dreiecke vorgebe und dann den blauen winkel wähle dann generiert er alle blauen linien, dabei auch die mit A bezeichnete,
damit die 1,0014 eins wird müsste, abhängig vom blauen winkel, der magenta winkel derart gewählt werden dass B parallel zu A liegt, (darum meine ich: magenta hängt zwangsweise ab von blau)
das parallelisieren sollte für einen grösseren blau-winkel bereich möglich sein,
spiegelt man alles(gelb) dann ergibt sich bei mir innen eine doppelte überschneidung, die es eben zu minimieren gilt
ob die überschneidung null werden kann kann oder nicht??? ich kanns nicht entscheiden
haribo
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1165, vom Themenstarter, eingetragen 2018-04-24
|
Das ist das genaueste, was ich erreicht habe. Eine Abweichung von weniger als 0,004 bei zwei Kanten. Die gemessenen Kanten haben natürlich je ein symmetrisches Pendant, was nur gezeichnet, aber nicht extra gemessen wurde, da es dieselben Abstände wären. Es kommt darauf an in welcher Reihenfolge die drei Kanten gemessen werden.
\geo
ebene(479.86,539.1)
x(7.97,14.27)
y(8.4,15.48)
form(.)
\geo
ebene(366.74,427.41)
x(7.69,14.1)
y(8.44,15.91)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-120.28666469129485,-2.276358377462431];
#P[2]=[-82.55460323533744,-45.30554982011669]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#N(24,17,18); N(25,24,18);
#N(26,19,24); N(27,13,19);
#A(25,21,ab(21,25,[1,28]));
#N(53,27,52); N(54,52,27);
#R(41,54); A(41,54); A(14,53);
#R(51,53); A(51,53); A(26,54);
#R(23,51); A(23,51); A(26,49);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.898171585258502,9.960224063638606,P1)
p(8.557482566392084,9.208353709018425,P2)
p(8.878965903278782,10.15526894498424,P3)
p(9.538276884412364,9.403398590364061,P4)
p(9.216793547525665,8.456483354398246,P5)
p(9.859760221299062,10.350313826329874,P6)
p(8.72691013355351,10.519860033327724,P7)
p(7.82788189278369,10.957750684402079,P8)
p(8.656620441078699,11.517386654091199,P9)
p(7.7575922003088795,11.955277305165554,P10)
p(8.586330748603888,12.514913274854674,P11)
p(7.687302507834068,12.952803925929029,P12)
p(9.4146691289205,11.245799124637589,P13)
p(9.546940578715695,12.237012655401307,P14)
p(9.720693898152037,9.320245148319824,P15)
p(10.216783379193355,8.45197374674071,P16)
p(10.720683729819728,9.315735540662287,P17)
p(11.216773210861044,8.447464139083175,P18)
p(10.636890542077904,9.720974121141829,P19)
p(8.647912337945876,12.674903306475663,P20)
p(9.129250330293967,14.338728338479422,P21)
p(8.408276419064016,13.645766132204226,P22)
p(9.368886249175825,13.36786551275086,P23)
p(11.720673561487416,9.311225933004751,P24)
p(12.216763042528735,8.442954531425638,P25)
p(11.467033565706732,10.278524621384081,P26)
p(10.191799449699339,10.616459419449543,P27)
p(13.4478417875642,12.821458806266456,P28)
p(12.788530806430618,13.573329160886635,P29)
p(12.467047469543921,12.62641392492082,P30)
p(11.807736488410338,13.378284279540999,P31)
p(12.129219825297033,14.325199515506814,P32)
p(11.486253151523638,12.431369043575186,P33)
p(12.619103239269192,12.261822836577334,P34)
p(13.518131480039012,11.823932185502981,P35)
p(12.689392931744003,11.26429621581386,P36)
p(13.588421172513822,10.826405564739506,P37)
p(12.759682624218813,10.266769595050386,P38)
p(13.658710864988635,9.828878943976033,P39)
p(11.931344243902203,11.535883745267471,P40)
p(11.799072794107005,10.544670214503753,P41)
p(11.625319474670663,13.461437721585236,P42)
p(11.129229993629348,14.32970912316435,P43)
p(10.625329643002974,13.465947329242775,P44)
p(10.129240161961649,14.334218730821883,P45)
p(10.709122830744803,13.060708748763235,P46)
p(12.698101034876824,10.106779563429397,P47)
p(12.937736953758684,9.135916737700835,P48)
p(11.977127123646875,9.4138173571542,P49)
p(9.62533981133523,13.47045693690028,P50)
p(9.878979807115954,12.50315824852097,P51)
p(11.154213923123365,12.165223450455517,P52)
p(10.32407089949454,11.60767295021326,P53)
p(11.021942473328165,11.1740099196918,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14) s(P53,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P45,P21) s(P50,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P51,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P19,P26) s(P24,P26) s(P54,P26) s(P49,P26)
s(P13,P27) s(P19,P27)
s(P28,P29)
s(P28,P30) s(P29,P30)
s(P29,P31) s(P30,P31)
s(P29,P32) s(P31,P32)
s(P30,P33) s(P31,P33)
s(P28,P34)
s(P28,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P47,P39) s(P48,P39)
s(P33,P40) s(P34,P40)
s(P38,P41) s(P40,P41) s(P54,P41)
s(P32,P42)
s(P32,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P33,P46) s(P42,P46)
s(P41,P47) s(P48,P47) s(P49,P47)
s(P25,P48)
s(P25,P49) s(P48,P49)
s(P44,P50) s(P45,P50)
s(P46,P51) s(P50,P51) s(P53,P51)
s(P40,P52) s(P46,P52)
s(P27,P53) s(P52,P53)
s(P52,P54) s(P27,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P41,P54) abstand(P41,P54,A0) print(abs(P41,P54):,7.69,15.911) print(A0,8.82,15.911)
color(red) s(P51,P53) abstand(P51,P53,A1) print(abs(P51,P53):,7.69,15.649) print(A1,8.82,15.649)
color(red) s(P23,P51) abstand(P23,P51,A2) print(abs(P23,P51):,7.69,15.387) print(A2,8.82,15.387)
print(min=0.9999999999999913,7.69,15.125)
print(max=1.0039492470558278,7.69,14.863)
\geooff
\geoprint()
Hier der Aufbau des Graphen. Die gemessenen Kanten erst 1, dann 2, dann 3 eingefügt.
http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_slash_108er_aufbau.png
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1166, vom Themenstarter, eingetragen 2018-04-25
|
Variationen
\geo
ebene(520.07,565.39)
x(7.35,14.17)
y(8.46,15.88)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-11.957382724521812,-117.24516390610442];
#P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#N(24,17,18); N(25,24,18);
#A(25,21,ab(21,25,[1,25]));
#N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50);
#N(51,13,19); N(53,14,51); N(54,51,49);
#R(53,50); A(53,50); A(54,39);
#N(55,53,54);
#R(44,55); R(38,55); A(44,55); A(38,55);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.843022340097214,8.460794315201198,P1)
p(10.843013021899832,8.465111294229926,P2)
p(10.33927906749204,9.328970138704351,P3)
p(11.339269749294658,9.333287117733079,P4)
p(11.84300370370245,8.469428273258655,P5)
p(10.835535794886866,10.197145962207504,P6)
p(9.964324190904389,9.453409981504503,P7)
p(9.044042882287723,9.062152632677934,P8)
p(9.165344733094898,10.054768298981239,P9)
p(8.24506342447823,9.663510950154672,P10)
p(8.366365275285407,10.656126616457977,P11)
p(7.4460839666687395,10.264869267631408,P12)
p(9.86770059126832,10.448730974950019,P13)
p(9.206320680052748,11.19878204857133,P14)
p(11.531890703587617,9.419801200671651,P15)
p(12.510494301853672,9.21404649851219,P16)
p(12.199381301738839,10.164419425925185,P17)
p(13.177984900004894,9.958664723765724,P18)
p(11.819106922766856,10.377666975945193,P19)
p(8.286039371436082,10.807524699744759,P20)
p(7.346132592012516,12.262370136893878,P21)
p(7.396108279340627,11.263619702262645,P22)
p(8.236063684107972,11.806275134375994,P23)
p(12.86687189989006,10.90903765117872,P24)
p(13.845475498156116,10.70328294901926,P25)
p(11.348585750071416,14.504858770711937,P26)
p(10.348595068268798,14.500541791683208,P27)
p(10.852329022676592,13.636682947208786,P28)
p(9.852338340873974,13.632365968180057,P29)
p(9.34860438646618,14.49622481265448,P30)
p(10.356072295281765,12.768507123705632,P31)
p(11.227283899264242,13.512243104408634,P32)
p(12.14756520788091,13.903500453235203,P33)
p(12.026263357073733,12.910884786931899,P34)
p(12.9465446656904,13.302142135758466,P35)
p(12.825242814883223,12.309526469455163,P36)
p(13.74552412349989,12.70078381828173,P37)
p(11.32390749890031,12.516922110963119,P38)
p(11.985287410115882,11.766871037341808,P39)
p(9.659717386581013,13.545851885241486,P40)
p(8.68111378831496,13.75160658740095,P41)
p(8.992226788429795,12.801233659987956,P42)
p(8.013623190163738,13.00698836214742,P43)
p(9.372501167401774,12.587986109967941,P44)
p(12.905568718732548,12.158128386168379,P45)
p(13.795499810828003,11.702033383650495,P46)
p(12.95554440606066,11.159377951537143,P47)
p(8.324736190278584,12.056615434734466,P48)
p(11.976940807794602,11.3651326536966,P49)
p(9.214667282374016,11.600520432216534,P50)
p(10.851271719148311,10.62925198868771,P51)
p(10.189891807932739,11.37930306230902,P53)
p(11.009105604176058,11.616717666439119,P54)
p(10.347725692960486,12.36676874006043,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P50,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38) s(P55,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44) s(P55,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47) s(P49,P47)
s(P42,P48) s(P43,P48)
s(P19,P49) s(P24,P49)
s(P44,P50) s(P48,P50)
s(P13,P51) s(P19,P51)
s(P14,P53) s(P51,P53) s(P50,P53)
s(P51,P54) s(P49,P54) s(P39,P54)
s(P53,P55) s(P54,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.35,15.883) print(A0,8.2,15.883)
color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.35,15.686) print(A1,8.2,15.686)
color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.35,15.489) print(A2,8.2,15.489)
color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.35,15.293) print(A3,8.2,15.293)
print(min=0.987662367938243,7.35,15.096)
print(max=1.000000000000018,7.35,14.899)
\geooff
\geoprint()
\geo
ebene(522.74,559.44)
x(7.81,14.67)
y(8.46,15.81)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-11.9573827245218,-117.24516390610442];
#P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#N(24,17,18); N(25,24,18);
#A(25,21,ab(21,25,[1,25]));
#N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50);
#N(51,13,19); N(53,14,51); N(54,51,49);
#R(53,50); A(53,50); A(54,39);
#N(55,53,54);
#R(44,55); R(38,55); A(44,55); A(38,55);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.843022340097214,8.460794315201198,P1)
p(10.843013021899832,8.465111294229926,P2)
p(10.33927906749204,9.328970138704351,P3)
p(11.339269749294658,9.333287117733079,P4)
p(11.84300370370245,8.469428273258654,P5)
p(10.835535794886866,10.197145962207504,P6)
p(10.139141200769586,9.415945413381008,P7)
p(9.16389665495708,9.194816320173082,P8)
p(9.460015515629452,10.149967418352892,P9)
p(8.484770969816948,9.928838325144966,P10)
p(8.780889830489318,10.883989423324776,P11)
p(7.805645284676814,10.66286033011685,P12)
p(9.85122721658682,10.373601686639846,P13)
p(9.66266327799079,11.355662601787756,P14)
p(11.741393289897585,9.46425254105996,P15)
p(12.653741585017201,9.05483760680337,P16)
p(12.552131171212338,10.049661874604675,P17)
p(13.464479466331953,9.640246940348083,P18)
p(11.799672284233925,10.462552876038941,P19)
p(8.687418732178285,11.134533508579828,P20)
p(7.870456822512903,12.661809920417546,P21)
p(7.838051053594858,11.662335125267198,P22)
p(8.71982450109633,12.134008303730177,P23)
p(13.36286905252709,10.63507120814939,P24)
p(14.275217347646706,10.225656273892797,P25)
p(12.3026518300624,14.426671879109147,P26)
p(11.30266114825978,14.42235490008042,P27)
p(11.80639510266757,13.558496055605994,P28)
p(10.806404420864954,13.554179076577267,P29)
p(10.302670466457162,14.418037921051692,P30)
p(11.310138375272746,12.690320232102842,P31)
p(12.006532969390024,13.471520780929335,P32)
p(12.981777515202529,13.692649874137263,P33)
p(12.685658654530158,12.737498775957452,P34)
p(13.660903200342663,12.958627869165378,P35)
p(13.36478433967029,12.003476770985568,P36)
p(14.340028885482797,12.224605864193494,P37)
p(12.29444695357279,12.5138645076705,P38)
p(12.48301089216882,11.53180359252259,P39)
p(10.404280880262029,13.423213653250386,P40)
p(9.491932585142408,13.832628587506978,P41)
p(9.593542998947276,12.837804319705677,P42)
p(8.681194703827657,13.247219253962264,P43)
p(10.346001885925686,12.424913318271404,P44)
p(13.458255437981325,11.752932685730515,P45)
p(14.307623116564752,11.225131069043146,P46)
p(13.42584966906328,10.753457890580167,P47)
p(8.782805117632522,12.252394986160958,P48)
p(12.51350137394366,11.162872824836754,P49)
p(9.63217279621595,11.724593369473594,P50)
p(10.815363705933878,10.639008600471284,P51)
p(10.626799767337848,11.621069515619196,P53)
p(11.529192795643615,11.339328549269096,P54)
p(11.340628857047584,12.321389464417006,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P50,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38) s(P55,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44) s(P55,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47) s(P49,P47)
s(P42,P48) s(P43,P48)
s(P19,P49) s(P24,P49)
s(P44,P50) s(P48,P50)
s(P13,P51) s(P19,P51)
s(P14,P53) s(P51,P53) s(P50,P53)
s(P51,P54) s(P49,P54) s(P39,P54)
s(P53,P55) s(P54,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.81,15.805) print(A0,8.66,15.805)
color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.81,15.608) print(A1,8.66,15.608)
color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.81,15.411) print(A2,8.66,15.411)
color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.81,15.214) print(A3,8.66,15.214)
print(min=0.9730445023401546,7.81,15.017)
print(max=1.0000000000000038,7.81,14.821)
\geooff
\geoprint()
\geo
ebene(565.87,501.58)
x(7.29,14.72)
y(8.46,15.05)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-11.9573827245218,-117.24516390610442];
#P[2]=[64.21441975153957,-116.91632876808413]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#N(24,17,18); N(25,24,18);
#A(25,21,ab(21,25,[1,25]));
#N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50);
#N(51,13,19); N(53,14,51); N(54,51,49);
#R(53,50); A(53,50); A(54,39);
#N(55,53,54);
#R(44,55); R(38,55); A(44,55); A(38,55);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.843022340097214,8.460794315201198,P1)
p(10.843013021899832,8.465111294229926,P2)
p(10.33927906749204,9.328970138704351,P3)
p(11.339269749294658,9.333287117733079,P4)
p(11.84300370370245,8.469428273258654,P5)
p(10.835535794886866,10.197145962207504,P6)
p(9.88641345660515,9.459852477175863,P7)
p(8.999508150222933,8.997901205382973,P8)
p(9.042899266730869,9.996959367357638,P9)
p(8.155993960348653,9.535008095564748,P10)
p(8.199385076856588,10.534066257539411,P11)
p(7.312479770474374,10.072114985746522,P12)
p(9.870626082622325,10.459727848821112,P13)
p(9.059359210468315,11.044403880607476,P14)
p(11.80935289027558,9.468861924260915,P15)
p(12.691713228154004,8.998287558045465,P16)
p(12.658062414727134,9.997721209047727,P17)
p(13.540422752605558,9.527146842832275,P18)
p(11.79793169911623,10.468796700330087,P19)
p(8.172453904086103,10.58245260881458,P20)
p(7.288523211918294,12.071971501425121,P21)
p(7.300501491196333,11.07204324358582,P22)
p(8.160475624808065,11.582380866653878,P23)
p(13.50677193917869,10.526580493834537,P24)
p(14.389132277057112,10.056006127619085,P25)
p(11.834633148878194,13.667183313843008,P26)
p(10.834642467075573,13.662866334814277,P27)
p(11.338376421483368,12.799007490339854,P28)
p(10.338385739680746,12.794690511311126,P29)
p(9.834651785272959,13.658549355785553,P30)
p(10.842119694088542,11.930831666836703,P31)
p(11.791242032370258,12.668125151868344,P32)
p(12.678147338752472,13.130076423661233,P33)
p(12.634756222244537,12.131018261686568,P34)
p(13.521661528626755,12.592969533479458,P35)
p(13.478270412118817,11.593911371504795,P36)
p(14.365175718501032,12.055862643297685,P37)
p(11.807029406353083,11.668249780223094,P38)
p(12.618296278507092,11.08357374843673,P39)
p(9.868302598699824,12.659115704783288,P40)
p(8.985942260821403,13.129690070998741,P41)
p(9.019593074248274,12.13025641999648,P42)
p(8.137232736369848,12.600830786211935,P43)
p(9.879723789859177,11.659180928714125,P44)
p(13.505201584889305,11.54552502022963,P45)
p(14.377153997779073,11.055934385458386,P46)
p(13.517179864167343,10.545596762390327,P47)
p(8.170883549796718,11.601397135209664,P48)
p(12.634819526288927,11.016171128605796,P49)
p(9.042835962686482,11.11180650043841,P50)
p(10.83302198685169,10.731378586943695,P51)
p(10.02175511469768,11.316054618730057,P53)
p(11.669909814024388,11.278753015219404,P54)
p(10.858642941870377,11.863429047005768,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P50,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38) s(P55,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44) s(P55,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47) s(P49,P47)
s(P42,P48) s(P43,P48)
s(P19,P49) s(P24,P49)
s(P44,P50) s(P48,P50)
s(P13,P51) s(P19,P51)
s(P14,P53) s(P51,P53) s(P50,P53)
s(P51,P54) s(P49,P54) s(P39,P54)
s(P53,P55) s(P54,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.29,15.046) print(A0,8.14,15.046)
color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.29,14.849) print(A1,8.14,14.849)
color(red) s(P44,P55) abstand(P44,P55,A2) print(abs(P44,P55):,7.29,14.652) print(A2,8.14,14.652)
color(red) s(P38,P55) abstand(P38,P55,A3) print(abs(P38,P55):,7.29,14.455) print(A3,8.14,14.455)
print(min=0.968262274487562,7.29,14.258)
print(max=1.0000000000000078,7.29,14.061)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1167, vom Themenstarter, eingetragen 2018-04-25
|
Versuch...
\geo
ebene(495.16,509.26)
x(7.41,14.59)
y(8.88,16.26)
form(.)
#//Eingabe war:
#
#Fig.3a 4-regular matchstick graph with 64 vertices. Extended
#version of Fig.1a. This graph is rigid.
#
#
#
#
#P[1]=[-72.57471077076244,307.4349821718721];
#P[2]=[-107.98297565127419,248.2807558702591]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2);
#L(12,10,8); N(13,12,3); N(14,13,6); N(15,14,7); L(16,15,7); N(17,15,16);
#N(18,17,16); N(19,12,13); M(19,18,17,green_angle,1); N(21,20,19); N(22,21,19);
#N(23,21,22); N(24,23,22); N(25,17,20);
#N(26,14,25); N(27,26,25); R(23,27); A(23,27);
#A(11,24,ab(11,24,[1,27],"gespiegelt"),Bew(2));
#N(53,12,13); N(54,39,38); R(27,52); //N(55,53,26); N(56,51,54);
#
#
#
#
#
#
#
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(8.947304220515587,14.459342720916169,P1)
p(8.433707533698376,13.601310994643542,P2)
p(9.433583149312092,13.58553907969663,P3)
p(8.919986462494881,12.727507353424004,P4)
p(7.9201108468811645,12.743279268370916,P5)
p(8.40638977567767,11.869475627151377,P6)
p(7.406514160063954,11.885247542098288,P7)
p(9.723788231827777,13.829205767408022,P8)
p(9.881260835773071,14.816729123590896,P9)
p(10.657744847085262,14.186592170082747,P10)
p(10.815217451030556,15.174115526265624,P11)
p(10.500272243139968,13.199068813899874,P12)
p(9.686400015151554,12.618024928716341,P13)
p(9.385152448060673,11.664478965837873,P14)
p(8.385276832446957,11.680250880784786,P15)
p(7.718363179866968,10.93511587288191,P16)
p(8.69712585224997,10.73011921156841,P17)
p(8.03021219966998,9.984984203665533,P18)
p(8.95927175960298,9.61505402904186,P19)
p(8.815110908486997,10.604608296884464,P20)
p(9.744170468419995,10.23467812226079,P21)
p(9.888331319535979,9.245123854418186,P22)
p(10.673230028352995,9.864747947637117,P23)
p(10.817390879468979,8.87519367979451,P24)
p(9.482024561066986,11.34974330478734,P25)
p(10.376297006093008,11.797266258463662,P26)
p(10.316727030240338,10.799042126328542,P27)
p(12.683623498119204,14.460631929255452,P28)
p(13.197812186302212,13.602954837953233,P29)
p(12.19794769289904,13.586492917299262,P30)
p(12.712136381082052,12.728815825997044,P31)
p(13.712000874485224,12.745277746651013,P32)
p(13.226325069265059,11.871138734694824,P33)
p(14.226189562668232,11.887600655348797,P34)
p(11.907574526249888,13.82995927782638,P35)
p(11.74942047457488,14.817373727760538,P36)
p(10.973371502705564,14.186701076331463,P37)
p(11.131525554380575,13.199286626397306,P38)
p(11.945798564227236,12.618804528968573,P39)
p(12.247704097173328,11.665466682674541,P40)
p(13.247568590576499,11.681928603328519,P41)
p(13.914996298520398,10.937254006830992,P42)
p(12.936375326428665,10.731581954810714,P43)
p(13.603803034372568,9.98690735831319,P44)
p(12.674998982738034,9.616336132140297,P45)
p(12.81847691277803,10.605989649080161,P46)
p(11.889672861143493,10.235418422907268,P47)
p(11.746194931103503,9.245764905967402,P48)
p(10.96086880950898,9.864847196734372,P49)
p(12.151049204834127,11.350664245577688,P50)
p(11.256468139261662,11.797569959480779,P51)
p(11.316726970711395,10.799387173998927,P52)
p(10.59653489442831,12.2037128464355,P53)
p(11.035949816488548,12.203864465539716,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11) s(P36,P11) s(P37,P11)
s(P10,P12) s(P8,P12)
s(P12,P13) s(P3,P13)
s(P13,P14) s(P6,P14)
s(P14,P15) s(P7,P15)
s(P15,P16) s(P7,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P18,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P21,P22) s(P19,P22)
s(P21,P23) s(P22,P23) s(P27,P23)
s(P23,P24) s(P22,P24) s(P48,P24) s(P49,P24)
s(P17,P25) s(P20,P25)
s(P14,P26) s(P25,P26)
s(P26,P27) s(P25,P27)
s(P28,P29)
s(P28,P30) s(P29,P30)
s(P29,P31) s(P30,P31)
s(P29,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P28,P35)
s(P28,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P35,P38) s(P37,P38)
s(P30,P39) s(P38,P39)
s(P33,P40) s(P39,P40)
s(P34,P41) s(P40,P41)
s(P34,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P44,P45)
s(P44,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P45,P48) s(P47,P48)
s(P47,P49) s(P48,P49) s(P52,P49)
s(P43,P50) s(P46,P50)
s(P40,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P12,P53) s(P13,P53)
s(P39,P54) s(P38,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10)
color(#008000) m(P17,P18,MA11) m(P18,P19,MB11) b(P18,MA11,MB11)
pen(2)
color(red) s(P23,P27) abstand(P23,P27,A0) print(abs(P23,P27):,7.41,16.262) print(A0,8.35,16.262)
color(red) s(P27,P52) abstand(P27,P52,A1) print(abs(P27,P52):,7.41,16.044) print(A1,8.35,16.044)
print(min=0.9999999999999858,7.41,15.827)
print(max=1.0000000000000053,7.41,15.609)
\geooff
\geoprint()
Ich wär so gern 'n 4/10. ;-)
\geo
ebene(492.98,498.54)
x(7.58,14.73)
y(8.83,16.06)
form(.)
#//Eingabe war:
#
#Fig.3a 4-regular matchstick graph with 64 vertices. Extended
#version of Fig.1a. This graph is rigid.
#
#
#
#
#P[1]=[-63.6209651262796,306.8407163799726];
#P[2]=[-97.99145355664761,247.0775401236111]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2);
#L(12,10,8); N(13,12,3); N(14,13,6); N(15,14,7); L(16,15,7); N(17,15,16);
#N(18,17,16); N(19,12,13); M(19,18,17,green_angle,1); N(21,20,19); N(22,21,19);
#N(23,21,22); N(24,23,22); N(25,17,20);
#N(26,25,23); N(27,12,13); N(28,14,25);// N(29,14,28);
#
#A(11,24,ab(11,24,[1,28],"gespiegelt"),Bew(2));
#N(55,26,52); R(26,52); A(26,52);
#
#
#
#
#
#
#
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.077178251709407,14.450722898881978,P1)
p(8.578634506578256,13.583858356874055,P2)
p(9.578633094162655,13.585539079696604,P3)
p(9.080089349031503,12.718674537688681,P4)
p(8.080090761447105,12.716993814866132,P5)
p(8.581545603900352,11.851809995680759,P6)
p(7.581547016315953,11.85012927285821,P7)
p(9.863186685860953,13.832507126321428,P8)
p(10.005573032842838,14.822318284165767,P9)
p(10.791581466994383,14.204102511605221,P10)
p(10.933967813976269,15.193913669449561,P11)
p(10.649195120012497,13.21429135376088,P12)
p(9.843932530447525,12.621373010439378,P13)
p(9.563281867224141,11.6615630265195,P14)
p(8.563283279639741,11.65988230369695,P15)
p(7.907656439691202,10.90479724442277,P16)
p(8.889392703014991,10.71455027526151,P17)
p(8.23376586306645,9.959465215987331,P18)
p(9.160575292426653,9.583933217818045,P19)
p(9.022390828095086,10.574339727195582,P20)
p(9.949200257455287,10.198807729026296,P21)
p(10.087384721786854,9.208401219648758,P22)
p(10.87600968681549,9.82327573085701,P23)
p(11.014194151147056,8.832869221479472,P24)
p(9.678017668043625,11.329424786469762,P25)
p(10.490028459290382,10.74578236606253,P26)
p(10.760046172916214,12.22045432281962,P27)
p(10.55113906189968,11.816927639375116,P28)
p(12.80891022631592,14.497787998029544,P29)
p(13.329157937879007,13.643772589144335,P30)
p(12.329435042779519,13.620232559112587,P31)
p(12.849682754342606,12.766217150227376,P32)
p(13.849405649442097,12.789757180259128,P33)
p(13.369930465905696,11.912201741342168,P34)
p(14.369653361005184,11.93574177137392,P35)
p(12.03874336539289,13.859945536025041,P36)
p(11.871439020146093,14.845850833739552,P37)
p(11.101272159223065,14.208008371735048,P38)
p(11.268576504469857,13.222103074020534,P39)
p(12.088536506294156,12.649682253811925,P40)
p(12.393304551281389,11.697255648369458,P41)
p(13.393027446380879,11.720795678401204,P42)
p(14.067489180651613,10.9824858728287,P43)
p(13.090863266027302,10.767539779855985,P44)
p(13.765325000298041,10.02922997428348,P45)
p(12.848281383914381,9.630443056682143,P46)
p(12.961443590766564,10.624019583649417,P47)
p(12.044399974382896,10.225232666048075,P48)
p(11.931237767530723,9.231656139080805,P49)
p(11.127356357999204,9.826445748446742,P50)
p(12.286981856495824,11.36232938922192,P51)
p(11.48994896061986,10.758393496190575,P52)
p(11.182825533426222,12.225786472249254,P53)
p(11.401843240419769,11.82765683342757,P54)
p(10.97906715125481,11.61804445841879,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11) s(P37,P11) s(P38,P11)
s(P10,P12) s(P8,P12)
s(P12,P13) s(P3,P13)
s(P13,P14) s(P6,P14)
s(P14,P15) s(P7,P15)
s(P15,P16) s(P7,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P18,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P21,P22) s(P19,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24) s(P49,P24) s(P50,P24)
s(P17,P25) s(P20,P25)
s(P25,P26) s(P23,P26) s(P52,P26)
s(P12,P27) s(P13,P27)
s(P14,P28) s(P25,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P29,P36)
s(P29,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P36,P39) s(P38,P39)
s(P31,P40) s(P39,P40)
s(P34,P41) s(P40,P41)
s(P35,P42) s(P41,P42)
s(P35,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P46,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P44,P51) s(P47,P51)
s(P50,P52) s(P51,P52)
s(P39,P53) s(P40,P53)
s(P41,P54) s(P51,P54)
s(P26,P55) s(P52,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) b(P1,MA10,MB10)
color(#008000) m(P17,P18,MA11) m(P18,P19,MB11) b(P18,MA11,MB11)
pen(2)
color(red) s(P26,P52) abstand(P26,P52,A0) print(abs(P26,P52):,7.58,16.064) print(A0,8.52,16.064)
print(min=0.9999999999999961,7.58,15.847)
print(max=1.0000000247910488,7.58,15.629)
\geooff
\geoprint()
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1168, eingetragen 2018-04-25
|
\quoteon(2018-04-24 22:55 - Slash in Beitrag No. 1165)
Das ist das genaueste, was ich erreicht habe. Eine Abweichung von weniger als 0,004 bei zwei Kanten. Die gemessenen Kanten haben natürlich je ein symmetrisches Pendant, was nur gezeichnet, aber nicht extra gemessen wurde, da es dieselben Abstände wären. Es kommt darauf an in welcher Reihenfolge die drei Kanten gemessen werden.
\quoteoff
ich hätte kante 3 als erstes eingesetzt....
wiso gibst du den zwiten winkel als minus (-11.5) ein? ich hab keinerlei ahnung wie stefan die optimierungen ablaufen lässt, aber ganz evtl läuft da auch was falsch wenn der winkel negativ is???
egal, du bist auf einem guten weg endlich das program zu nutzen, das is also nur ne frage der zeit bis du ergebnisse erhältst... glück auf
haribo
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1169, vom Themenstarter, eingetragen 2018-04-25
|
Ich hatte alle Möglichkeiten schon durchgespielt. Kante 3 als erstes liefert schlechtere Ergebnisse.
|P23,P51|=1.00000000000000133227
|P41,P54|=0.99999999999999467093
|P51,P53|=1.01833482185681178933
|P23,P51|=1.00000000000000022204
|P51,P53|=1.00000000000000222045
|P41,P54|=0.98416592076197917383
Der negative Winkel spielt (wohl) keine Rolle. Dann addiert man 360 und der Winkel ist positiv. Das Ergebnis ist dasselbe. Aber Stefan wird sich bestimmt dazu äußern. Meine Fähigkeiten das Programm zu bedienen schätze ich so mit 20-30% ein. Da ist noch viel Luft nach Oben. ;-)
\geo
ebene(366.74,427.41)
x(7.69,14.1)
y(9.32,16.79)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-120.28666469129485,47.72364162253757];
#P[2]=[-82.55460323533744,4.6944501798833045]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#N(24,17,18); N(25,24,18);
#N(26,19,24); N(27,13,19);
#A(25,21,ab(21,25,[1,28]));
#N(53,27,52); N(54,52,27);
#R(41,54); A(41,54); A(14,53);
#R(51,53); A(51,53); A(26,54);
#R(23,51); A(23,51); A(26,49);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.898171585258503,10.833898805612563,P1)
p(8.557482566392084,10.082028450992382,P2)
p(8.878965903278782,11.028943686958197,P3)
p(9.538276884412364,10.277073332338018,P4)
p(9.216793547525665,9.330158096372204,P5)
p(9.859760221299064,11.223988568303831,P6)
p(8.72691013355351,11.393534775301683,P7)
p(7.82788189278369,11.831425426376036,P8)
p(8.656620441078697,12.391061396065156,P9)
p(7.757592200308878,12.828952047139511,P10)
p(8.586330748603885,13.388588016828631,P11)
p(7.687302507834065,13.826478667902984,P12)
p(9.4146691289205,12.119473866611546,P13)
p(9.546940578715693,13.110687397375264,P14)
p(9.720693898152035,10.19391989029378,P15)
p(10.216783379193355,9.325648488714668,P16)
p(10.720683729819726,10.189410282636246,P17)
p(11.216773210861044,9.321138881057134,P18)
p(10.636890542077904,10.594648863115784,P19)
p(8.647912337945872,13.548578048449617,P20)
p(9.129250330293969,15.212403080453374,P21)
p(8.408276419064018,14.51944087417818,P22)
p(9.368886249175825,14.24154025472481,P23)
p(11.720673561487416,10.18490067497871,P24)
p(12.216763042528735,9.316629273399599,P25)
p(11.467033565706728,11.15219936335804,P26)
p(10.191799449699339,11.490134161423498,P27)
p(13.447841787564203,13.69513354824041,P28)
p(12.788530806430622,14.44700390286059,P29)
p(12.467047469543921,13.500088666894776,P30)
p(11.80773648841034,14.251959021514955,P31)
p(12.12921982529704,15.198874257480767,P32)
p(11.486253151523641,13.305043785549142,P33)
p(12.619103239269196,13.13549757855129,P34)
p(13.518131480039015,12.697606927476937,P35)
p(12.689392931744006,12.137970957787815,P36)
p(13.588421172513826,11.700080306713462,P37)
p(12.759682624218819,11.140444337024341,P38)
p(13.658710864988638,10.702553685949988,P39)
p(11.931344243902206,12.409558487241426,P40)
p(11.799072794107012,11.418344956477707,P41)
p(11.625319474670668,14.335112463559192,P42)
p(11.129229993629354,15.203383865138305,P43)
p(10.625329643002985,14.33962207121673,P44)
p(10.129240161961667,15.207893472795842,P45)
p(10.709122830744805,13.93438349073719,P46)
p(12.698101034876832,10.980454305403356,P47)
p(12.937736953758687,10.009591479674793,P48)
p(11.97712712364688,10.28749209912816,P49)
p(9.625339811335406,14.344131678874323,P50)
p(9.87897980711596,13.376832990494922,P51)
p(11.154213923123368,13.038898192429475,P52)
p(10.324070899494545,12.481347692187216,P53)
p(11.021942473328162,12.047684661665759,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14) s(P53,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P45,P21) s(P50,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P51,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P19,P26) s(P24,P26) s(P54,P26) s(P49,P26)
s(P13,P27) s(P19,P27)
s(P28,P29)
s(P28,P30) s(P29,P30)
s(P29,P31) s(P30,P31)
s(P29,P32) s(P31,P32)
s(P30,P33) s(P31,P33)
s(P28,P34)
s(P28,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P47,P39) s(P48,P39)
s(P33,P40) s(P34,P40)
s(P38,P41) s(P40,P41) s(P54,P41)
s(P32,P42)
s(P32,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P33,P46) s(P42,P46)
s(P41,P47) s(P48,P47) s(P49,P47)
s(P25,P48)
s(P25,P49) s(P48,P49)
s(P44,P50) s(P45,P50)
s(P46,P51) s(P50,P51) s(P53,P51)
s(P40,P52) s(P46,P52)
s(P27,P53) s(P52,P53)
s(P52,P54) s(P27,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P41,P54) abstand(P41,P54,A0) print(abs(P41,P54):,7.69,16.785) print(A0,8.82,16.785)
color(red) s(P51,P53) abstand(P51,P53,A1) print(abs(P51,P53):,7.69,16.523) print(A1,8.82,16.523)
color(red) s(P23,P51) abstand(P23,P51,A2) print(abs(P23,P51):,7.69,16.261) print(A2,8.82,16.261)
print(min=0.9999999999998886,7.69,15.999)
print(max=1.0039492470558284,7.69,15.737)
\geooff
\geoprint()
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1170, eingetragen 2018-04-26
|
Es bleibt ein super interessanter Graph, ist den der punktsymetrische gegenwinkel p26-49 eins? Oder auch 1.0034?
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1171, vom Themenstarter, eingetragen 2018-04-26
|
\quoteon(2018-04-26 07:03 - haribo in Beitrag No. 1170)
Es bleibt ein super interessanter Graph, ist den der punktsymetrische gegenwinkel p26-49 eins? Oder auch 1.0034?
\quoteoff
Nein, gleiche Länge. Wenn der Graph so aufgebaut ist wie dieser, also mit einer halben gespiegelten Hülle, dann sind bzw. sollten alle symmetrischen Kantenpaare gleichlang sein. Die einzige Ausnahme bildet #1163. Das kann Stefan vielleicht aufklären.
EDIT: Habe Meinen Fehler gefunden. Die parralele Kante ist gleich falsch. Ich hatte sie einfach nicht gemessen.
\geo
ebene(420.26,514.11)
x(7.86,14.54)
y(8.32,16.49)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-5.3968574786390775,-105.76785973360921];
#P[2]=[57.555045394138915,-105.49609515673293]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#
#N(24,17,18); N(25,24,18);
#A(25,21,ab(21,25,[1,25]));
#N(49,19,24); R(47,49); A(47,49); N(50,44,48); A(23,50);
#N(51,13,19); N(53,14,51); N(54,51,49);
#R(53,50); A(53,50); R(54,39); A(54,39);
#N(55,53,54);
#R(44,55); A(44,55); R(38,55); A(38,55);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.914270944270541,8.319878044329112,P1)
p(10.91426162607316,8.32419502335784,P2)
p(10.410527671665367,9.188053867832265,P3)
p(11.410518353467985,9.192370846860992,P4)
p(11.914252307875778,8.328512002386567,P5)
p(10.906784399060193,10.056229691335417,P6)
p(10.204325334749889,9.27688820653412,P7)
p(9.230503027360813,9.04957759606594,P8)
p(9.52055741784016,10.006587758270948,P9)
p(8.546735110451085,9.779277147802771,P10)
p(8.836789500930431,10.736287310007778,P11)
p(7.862967193541355,10.5089766995396,P12)
p(9.923176914939654,10.236552505150154,P13)
p(9.714959944420851,11.214635166885845,P14)
p(11.681610264465613,9.301074432073188,P15)
p(12.640195057045625,9.016267136811404,P16)
p(12.40755301363546,9.988829566498024,P17)
p(13.366137806215473,9.704022271236239,P18)
p(11.881207122561603,10.280952533797178,P19)
p(8.741137637031775,10.987324556417667,P20)
p(7.912614845227278,12.508360382248368,P21)
p(7.887791019384316,11.508668540893984,P22)
p(8.765961462874737,11.98701639777205,P23)
p(13.133495762805309,10.67658470092286,P24)
p(14.092080555385323,10.391777405661074,P25)
p(12.09042445634206,14.580259743580331,P26)
p(11.090433774539438,14.575942764551602,P27)
p(11.594167728947232,13.712083920077179,P28)
p(10.594177047144614,13.70776694104845,P29)
p(10.09044309273682,14.571625785522874,P30)
p(11.097911001552406,12.843908096574026,P31)
p(11.800370065862712,13.623249581375324,P32)
p(12.774192373251788,13.8505601918435,P33)
p(12.48413798277244,12.893550029638496,P34)
p(13.457960290161518,13.120860640106672,P35)
p(13.167905899682168,12.163850477901665,P36)
p(14.141728207071246,12.391161088369842,P37)
p(12.081518485672946,12.66358528275929,P38)
p(12.289735456191748,11.685502621023598,P39)
p(10.323085136146988,13.599063355836254,P40)
p(9.364500343566974,13.883870651098041,P41)
p(9.59714238697714,12.911308221411423,P42)
p(8.63855759439712,13.196115516673192,P43)
p(10.123488278050997,12.619185254112269,P44)
p(13.263557763580826,11.912813231491775,P45)
p(14.116904381228284,11.391469247015458,P46)
p(13.238733937737862,10.913121390137391,P47)
p(8.871199637807319,12.22355308698667,P48)
p(12.280149145157852,11.197928685399178,P49)
p(9.724546255454731,11.702209102510276,P50)
p(10.897599638441065,10.461275347611915,P51)
p(10.689382667922262,11.439358009347606,P53)
p(11.296541661037313,11.378251499213915,P54)
p(11.08832469051851,12.356334160949606,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P43,P21) s(P48,P21)
s(P21,P22)
s(P21,P23) s(P22,P23) s(P50,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37) s(P45,P37) s(P46,P37)
s(P31,P38) s(P32,P38) s(P55,P38)
s(P36,P39) s(P38,P39)
s(P30,P40)
s(P30,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P31,P44) s(P40,P44) s(P55,P44)
s(P39,P45) s(P46,P45) s(P47,P45)
s(P25,P46)
s(P25,P47) s(P46,P47) s(P49,P47)
s(P42,P48) s(P43,P48)
s(P19,P49) s(P24,P49)
s(P44,P50) s(P48,P50)
s(P13,P51) s(P19,P51)
s(P14,P53) s(P51,P53) s(P50,P53)
s(P51,P54) s(P49,P54) s(P39,P54)
s(P53,P55) s(P54,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P47,P49) abstand(P47,P49,A0) print(abs(P47,P49):,7.86,16.486) print(A0,8.9,16.486)
color(red) s(P53,P50) abstand(P53,P50,A1) print(abs(P53,P50):,7.86,16.248) print(A1,8.9,16.248)
color(red) s(P54,P39) abstand(P54,P39,A2) print(abs(P54,P39):,7.86,16.01) print(A2,8.9,16.01)
color(red) s(P44,P55) abstand(P44,P55,A3) print(abs(P44,P55):,7.86,15.772) print(A3,8.9,15.772)
color(red) s(P38,P55) abstand(P38,P55,A4) print(abs(P38,P55):,7.86,15.533) print(A4,8.9,15.533)
print(min=0.9999999999999133,7.86,15.295)
print(max=1.0396331884787928,7.86,15.057)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1172, vom Themenstarter, eingetragen 2018-04-26
|
Fast 112er.
\geo
ebene(473.21,442.38)
x(7.73,15.25)
y(9.56,16.59)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-143.0243171166264,171.19219992213064];
#P[2]=[-132.90805116349134,109.05785278261072]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#N(24,17,18); N(25,24,18);
#N(26,13,19); N(27,14,26); N(28,26,19);
#R(24,28); A(24,28);
#A(25,21,ab(21,25,[1,28]));
#
#N(55,54,23); N(56,28,50);
#
#R(27,55); A(27,55); A(53,56);
#R(27,56); A(27,56); R(53,55); A(53,55);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.72805939358418,12.71938729263494,P1)
p(7.888756230790458,11.73238347981966,P2)
p(8.663178187717453,12.365052929555748,P3)
p(8.823875024923728,11.378049116740469,P4)
p(8.049453067996735,10.74537966700438,P5)
p(9.598296981850723,12.010718566476555,P6)
p(8.703214597663443,12.497864544464168,P7)
p(8.407481323055844,13.453135097914794,P8)
p(9.382636527135107,13.231612349744022,P9)
p(9.086903252527506,14.186882903194647,P10)
p(10.062058456606769,13.965360155023877,P11)
p(9.766325181999168,14.920630708474501,P12)
p(9.562081970660026,13.010062587804775,P13)
p(10.558281334551939,13.097164983761207,P14)
p(8.848757866932148,11.34630548472136,P15)
p(8.969522491397282,10.353624314617988,P16)
p(9.768827290332693,10.954550132334967,P17)
p(9.889591914797826,9.961868962231597,P18)
p(9.797680643009134,11.03079706162881,P19)
p(10.26254805994434,14.052435537211835,P20)
p(11.76630620745724,14.911918773690921,P21)
p(10.766315694728204,14.916274741082713,P22)
p(11.262538572673376,14.048079569820045,P23)
p(10.68889671373324,10.562794779948575,P24)
p(10.809661338198373,9.570113609845205,P25)
p(9.761465631818435,12.03014108295703,P26)
p(10.757664995710346,12.117243478913462,P27)
p(10.645030447004121,11.561832191982404,P28)
p(14.847908152071435,11.762645090901188,P29)
p(14.687211314865156,12.749648903716466,P30)
p(13.912789357938163,12.116979453980377,P31)
p(13.752092520731885,13.103983266795659,P32)
p(14.526514477658878,13.736652716531747,P33)
p(12.977670563804892,12.47131381705957,P34)
p(13.872752947992172,11.984167839071958,P35)
p(14.168486222599771,11.028897285621333,P36)
p(13.19333101852051,11.250420033792105,P37)
p(13.48906429312811,10.295149480341479,P38)
p(12.513909089048845,10.51667222851225,P39)
p(12.809642363656446,9.561401675061624,P40)
p(13.013885574995587,11.47196979573135,P41)
p(12.017686211103676,11.384867399774919,P42)
p(13.727209678723467,13.135726898814768,P43)
p(13.606445054258337,14.128408068918135,P44)
p(12.80714025532292,13.52748225120116,P45)
p(12.686375630857784,14.520163421304531,P46)
p(12.778286902646482,13.451235321907316,P47)
p(12.313419485711274,10.429596846324293,P48)
p(11.809651850927409,9.565757642453415,P49)
p(11.313428972982239,10.43395281371608,P50)
p(11.887070831922376,13.91923760358755,P51)
p(12.81450191383718,12.451891300579096,P52)
p(11.818302549945269,12.364788904622664,P53)
p(11.930937098651498,12.920200191553722,P54)
p(10.947077280131731,13.099141124551885,P55)
p(11.628890265523887,11.382891258984241,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P46,P21) s(P51,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P17,P24) s(P18,P24) s(P28,P24)
s(P24,P25) s(P18,P25)
s(P13,P26) s(P19,P26)
s(P14,P27) s(P26,P27) s(P55,P27) s(P56,P27)
s(P26,P28) s(P19,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40) s(P48,P40) s(P49,P40)
s(P34,P41) s(P35,P41)
s(P39,P42) s(P41,P42)
s(P33,P43)
s(P33,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P34,P47) s(P43,P47)
s(P42,P48) s(P49,P48) s(P50,P48)
s(P25,P49)
s(P25,P50) s(P49,P50)
s(P45,P51) s(P46,P51) s(P54,P51)
s(P41,P52) s(P47,P52)
s(P42,P53) s(P52,P53) s(P56,P53) s(P55,P53)
s(P47,P54) s(P52,P54)
s(P54,P55) s(P23,P55)
s(P28,P56) s(P50,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P24,P28) abstand(P24,P28,A0) print(abs(P24,P28):,7.73,16.589) print(A0,8.76,16.589)
color(red) s(P27,P55) abstand(P27,P55,A1) print(abs(P27,P55):,7.73,16.35) print(A1,8.76,16.35)
color(red) s(P27,P56) abstand(P27,P56,A2) print(abs(P27,P56):,7.73,16.112) print(A2,8.76,16.112)
color(red) s(P53,P55) abstand(P53,P55,A3) print(abs(P53,P55):,7.73,15.874) print(A3,8.76,15.874)
print(min=0.9999999999999951,7.73,15.635)
print(max=1.1394326016384873,7.73,15.397)
\geooff
\geoprint()
Etwas genauer mit drittem Winkel.
\geo
ebene(650.31,509.9)
x(6.94,14.7)
y(8.69,14.77)
form(.)
#//Eingabe war:
#
#No.528-3: 4/4 fast mit 108
#
#
#
#
#
#P[1]=[-256.735112657664,93.0795504850324];
#P[2]=[-227.73768842948547,14.467376781584136]; D=ab(1,2);
#A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#N(15,14,5); N(16,14,15); N(17,16,15); N(18,16,17); N(19,18,17);
#M(20,19,18,orange_angle); N(21,20,19); N(22,20,21); N(23,22,21);
#N(24,6,14); N(25,13,24); N(26,25,24); N(27,26,20);
#A(23,12,ab(12,23,[1,27])); N(53,48,11); N(54,22,38); N(55,27,54); N(56,52,53);
#
#R(52,55); A(52,55); A(56,27);
#R(25,56); A(25,56); A(55,50);
#R(26,18); A(26,18); A(44,51);
#R(13,53); A(13,53); A(54,39);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(6.935960886458021,11.110870189919583,P1)
p(7.282034476109867,10.17266281916113,P2)
p(7.921509098378568,10.941475024757727,P3)
p(8.267582688030414,10.003267653999275,P4)
p(7.628108065761712,9.23445544840268,P5)
p(8.907057310299114,10.77207985959587,P6)
p(7.9276782210876,10.982430600247218,P7)
p(7.543051501280727,11.905502800246008,P8)
p(8.534768835910306,11.777063210573644,P9)
p(8.150142116103433,12.700135410572432,P10)
p(9.14185945073301,12.57169582090007,P11)
p(8.757232730926138,13.494768020898858,P12)
p(8.599121139764472,11.723486878109219,P13)
p(8.277743015809266,9.994701745122837,P14)
p(8.611318146878187,9.051978226835343,P15)
p(9.26095309692574,9.8122245235555,P16)
p(9.594528227994662,8.869501005268006,P17)
p(10.244163178042216,9.629747301988164,P18)
p(10.577738309111137,8.68702378370067,P19)
p(11.067032243596097,9.559142723797848,P20)
p(11.577662433599333,8.699342276567645,P21)
p(12.066956368084295,9.571461216664824,P22)
p(12.57758655808753,8.71166076943462,P23)
p(9.26547086648496,9.838516941125874,P24)
p(8.957534695950313,10.789923959639221,P25)
p(9.935445428589007,10.580900996809651,P26)
p(10.934979720678328,10.550385444422345,P27)
p(14.398858402555646,11.095558600413895,P28)
p(14.052784812903802,12.033765971172347,P29)
p(13.413310190635102,11.26495376557575,P30)
p(13.067236600983257,12.203161136334202,P31)
p(13.706711223251958,12.971973341930797,P32)
p(12.427761978714553,11.434348930737608,P33)
p(13.407141067926071,11.22399819008626,P34)
p(13.791767787732942,10.30092599008747,P35)
p(12.800050453103363,10.429365579759834,P36)
p(13.184677172910236,9.506293379761045,P37)
p(12.192959838280657,9.63473296943341,P38)
p(12.735698149249197,10.482941912224259,P39)
p(13.057076273204405,12.21172704521064,P40)
p(12.723501142135484,13.154450563498134,P41)
p(12.073866192087928,12.394204266777978,P42)
p(11.74029106101901,13.336927785065473,P43)
p(11.090656110971455,12.576681488345315,P44)
p(10.757080979902534,13.519405006632809,P45)
p(10.267787045417572,12.647286066535631,P46)
p(9.757156855414339,13.507086513765834,P47)
p(9.267862920929396,12.634967573668671,P48)
p(12.069348422528707,12.367911849207603,P49)
p(12.377284593063358,11.416504830694258,P50)
p(11.399373860424664,11.625527793523828,P51)
p(10.39983956833534,11.656043345911133,P52)
p(9.652489640736293,11.711895373669893,P53)
p(11.682329648277426,10.494533416663616,P54)
p(11.377750300974046,11.447020383081659,P55)
p(9.957068988039603,10.759408407251827,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P47,P12) s(P48,P12)
s(P7,P13) s(P6,P13) s(P53,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P16,P18) s(P17,P18)
s(P18,P19) s(P17,P19)
s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P37,P23) s(P38,P23)
s(P6,P24) s(P14,P24)
s(P13,P25) s(P24,P25) s(P56,P25)
s(P25,P26) s(P24,P26) s(P18,P26)
s(P26,P27) s(P20,P27)
s(P28,P29)
s(P28,P30) s(P29,P30)
s(P29,P31) s(P30,P31)
s(P29,P32) s(P31,P32)
s(P30,P33) s(P31,P33)
s(P28,P34)
s(P28,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P33,P39) s(P34,P39)
s(P32,P40)
s(P32,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44) s(P51,P44)
s(P43,P45) s(P44,P45)
s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P33,P49) s(P40,P49)
s(P39,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P46,P52) s(P51,P52) s(P55,P52)
s(P48,P53) s(P11,P53)
s(P22,P54) s(P38,P54) s(P39,P54)
s(P27,P55) s(P54,P55) s(P50,P55)
s(P52,P56) s(P53,P56) s(P27,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P18,P19,MA12) m(P19,P20,MB12) b(P19,MA12,MB12)
pen(2)
color(red) s(P52,P55) abstand(P52,P55,A0) print(abs(P52,P55):,6.94,14.773) print(A0,7.71,14.773)
color(red) s(P25,P56) abstand(P25,P56,A1) print(abs(P25,P56):,6.94,14.594) print(A1,7.71,14.594)
color(red) s(P26,P18) abstand(P26,P18,A2) print(abs(P26,P18):,6.94,14.415) print(A2,7.71,14.415)
color(red) s(P13,P53) abstand(P13,P53,A3) print(abs(P13,P53):,6.94,14.235) print(A3,7.71,14.235)
print(min=0.9999999999999739,6.94,14.056)
print(max=1.0534322768051052,6.94,13.877)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1173, vom Themenstarter, eingetragen 2018-04-26
|
124er Versuch. 3 Kanten falsch.
\geo
ebene(437.48,539.25)
x(6.83,14.48)
y(7.29,16.71)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-181.319763375821,21.63438411485348];
#P[2]=[-155.11820896144957,-29.24486827937457]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,5]),D);
#N(24,17,18); N(25,24,18);
#N(26,13,19); N(27,21,23); N(28,21,27); N(29,26,19); N(30,26,29);
#
#A(25,28,ab(25,28,[1,30],"gespiegelt"));
#N(59,57,29); R(24,59); R(30,58); A(24,59); A(54,59); A(30,58); N(60,44,56);
#N(60,30,58); N(61,14,60); N(62,60,44);
#R(61,27); A(61,27); R(62,56); A(62,56); R(61,62); A(61,62);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(6.8317100503570565,10.378028299186196,P1)
p(7.289542776202901,9.488989945039108,P2)
p(7.830556212910063,10.33000389337903,P3)
p(8.288388938755908,9.440965539231943,P4)
p(7.747375502048746,8.59995159089202,P5)
p(8.82940237546307,10.281979487571864,P6)
p(7.809934401251304,10.585578580606212,P7)
p(7.141078409531836,11.328970578371166,P8)
p(8.119302760426084,11.536520859791182,P9)
p(7.450446768706618,12.279912857556136,P10)
p(8.428671119600866,12.487463138976151,P11)
p(7.759815127881398,13.230855136741106,P12)
p(8.56136691599761,11.24538853489763,P13)
p(9.271567769815807,11.94938764514984,P14)
p(8.575792680147769,9.160063168196446,P15)
p(8.646654945997662,8.162577058379062,P16)
p(9.475072124096684,8.722688635683488,P17)
p(9.545934389946577,7.725202525866104,P18)
p(9.500539433965848,9.540646196329499,P19)
p(8.60271177809634,12.692779642914793,P20)
p(9.534685871711226,14.152719466616686,P21)
p(8.64725049979631,13.691787301678895,P22)
p(9.490147150011254,13.153711807852584,P23)
p(10.3743515680456,8.28531410317053,P24)
p(10.445213833895492,7.287827993353146,P25)
p(9.23250397450039,10.504055243655264,P26)
p(10.377582521926168,13.614643972790375,P27)
p(10.422121243626139,14.613651631554475,P28)
p(10.200858413452996,10.254476237004504,P29)
p(9.932822953987536,11.21788528433027,P30)
p(14.039164033105589,10.400747762543316,P31)
p(13.58694523467395,9.508840727956727,P32)
p(13.040640484123736,10.346427212760696,P33)
p(12.588421685692097,9.454520178174107,P34)
p(13.134726436242307,8.616933693370138,P35)
p(12.042116935141884,10.292106662978076,P36)
p(13.059650647921583,10.602126828598776,P37)
p(13.723806727507997,11.349720770487288,P38)
p(12.74429334232399,11.551099836542747,P39)
p(13.408449421910408,12.298693778431257,P40)
p(12.428936036726398,12.500072844486716,P41)
p(13.093092116312816,13.247666786375229,P42)
p(12.3040733784292,11.25718636011208,P43)
p(11.589448365575365,11.95669410917827,P44)
p(12.302794569008032,9.171811489177552,P45)
p(12.238222235460036,8.173898460031142,P46)
p(11.406290368225761,8.728776255838554,P47)
p(11.341718034677765,7.7308632266921435,P48)
p(11.375666855250302,9.546557006005116,P49)
p(12.253604445161775,12.704288051066783,P50)
p(11.312444867855035,14.15832334982806,P51)
p(12.202768492083923,13.702995068101643,P52)
p(11.363280820932884,13.1596163327932,P53)
p(10.509786167443492,8.285741022499556,P54)
p(11.637623298537616,10.51163670313912,P55)
p(10.472957196704085,13.614944614519619,P56)
p(10.670861542499322,10.25595778914395,P57)
p(10.932817985786633,11.221037486277954,P58)
p(10.4389239015936,9.28322713231695,P59)
p(10.430090582922531,12.08548248650036,P60)
p(9.75605814634898,12.824184235819205,P61)
p(11.099452573566484,12.828418907387883,P62)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P17,P24) s(P18,P24) s(P59,P24)
s(P24,P25) s(P18,P25) s(P48,P25) s(P54,P25)
s(P13,P26) s(P19,P26)
s(P21,P27) s(P23,P27)
s(P21,P28) s(P27,P28) s(P51,P28) s(P56,P28)
s(P26,P29) s(P19,P29)
s(P26,P30) s(P29,P30) s(P58,P30)
s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P32,P35) s(P34,P35)
s(P33,P36) s(P34,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42) s(P50,P42) s(P52,P42)
s(P36,P43) s(P37,P43)
s(P41,P44) s(P43,P44)
s(P35,P45)
s(P35,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P36,P49) s(P45,P49)
s(P44,P50) s(P52,P50) s(P53,P50)
s(P51,P52)
s(P51,P53) s(P52,P53)
s(P47,P54) s(P48,P54) s(P59,P54)
s(P43,P55) s(P49,P55)
s(P51,P56) s(P53,P56)
s(P49,P57) s(P55,P57)
s(P55,P58) s(P57,P58)
s(P57,P59) s(P29,P59)
s(P30,P60) s(P58,P60)
s(P14,P61) s(P60,P61) s(P27,P61) s(P62,P61)
s(P60,P62) s(P44,P62) s(P56,P62)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P24,P59) abstand(P24,P59,A0) print(abs(P24,P59):,6.83,16.71) print(A0,7.97,16.71)
color(red) s(P30,P58) abstand(P30,P58,A1) print(abs(P30,P58):,6.83,16.448) print(A1,7.97,16.448)
color(red) s(P61,P27) abstand(P61,P27,A2) print(abs(P61,P27):,6.83,16.186) print(A2,7.97,16.186)
color(red) s(P62,P56) abstand(P62,P56,A3) print(abs(P62,P56):,6.83,15.924) print(A3,7.97,15.924)
color(red) s(P61,P62) abstand(P61,P62,A4) print(abs(P61,P62):,6.83,15.662) print(A4,7.97,15.662)
print(min=0.9999999999999178,6.83,15.4)
print(max=1.3434011015040672,6.83,15.138)
\geooff
\geoprint()
122er Versuch. 3 Kanten falsch.
\geo
ebene(438.06,501.14)
x(6.84,14.5)
y(7.92,16.68)
form(.)
#//Eingabe war:
#
#4/4 fast mit 100
#
#
#
#
#P[1]=[-180.71932818960266,27.594541063952754];
#P[2]=[-159.9796386968027,-25.744797680233773]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel);
#L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,5]),D);
#N(24,17,18); N(25,24,18);
#N(26,13,19); N(27,21,23); N(28,21,27); N(29,26,19); N(30,26,29);
#A(25,28,ab(25,28,[1,30],"gespiegelt"));
#A(30,58); N(59,44,56); N(60,30,58); N(61,14,59);
#
#R(29,24); R(30,58); R(59,60); R(61,27); R(61,60);
#A(29,24); A(57,54); A(59,60); A(60,61); A(27,61);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(6.842201751484888,10.482173070878767,P1)
p(7.204596608809722,9.550148410591007,P2)
p(7.830556212910066,10.33000389337903,P3)
p(8.1929510702349,9.397979233091272,P4)
p(7.5669914661345565,8.618123750303248,P5)
p(8.818910674335244,10.177834715879294,P6)
p(7.81115973862763,10.729398512838701,P7)
p(7.112577231857122,11.444928023924184,P8)
p(8.081535218999864,11.692153465884118,P9)
p(7.382952712229354,12.407682976969602,P10)
p(8.351910699372098,12.654908418929535,P11)
p(7.653328192601588,13.370437930015019,P12)
p(8.708041119878269,11.17166968301142,P13)
p(9.158858623622738,12.064285825772465,P14)
p(8.254495315208201,9.344304483667143,P15)
p(8.539634353503326,8.385818318487837,P16)
p(9.227138202576969,9.11199905185173,P17)
p(9.512277240872093,8.153512886672427,P18)
p(9.252199344093638,9.276579519689559,P19)
p(8.460276116852228,12.779815336857947,P20)
p(9.483264456298357,14.177490140722297,P21)
p(8.568296324449973,13.773964035368659,P22)
p(9.375244248700612,13.183341442211587,P23)
p(10.199781089945738,8.87969362003632,P24)
p(10.484920128240862,7.921207454857015,P25)
p(9.141329789636664,10.270414486821682,P26)
p(10.290212380548997,13.586867547565227,P27)
p(10.398232588146742,14.581016246075936,P28)
p(10.057450895570843,9.869512853921623,P29)
p(9.94658134111387,10.863347821053749,P30)
p(14.05974591306567,10.576120385058879,P31)
p(13.721733162549,9.634978854528981,P32)
p(13.075687063811877,10.398277248544417,P33)
p(12.737674313295209,9.457135718014522,P34)
p(13.383720412032332,8.693837323999086,P35)
p(12.091628214558085,10.220434112029958,P36)
p(13.08468127107049,10.798041415902764,P37)
p(13.764402842412915,11.531511650780626,P38)
p(12.789338200417737,11.753432681624512,P39)
p(13.469059771760161,12.486902916502373,P40)
p(12.493995129764983,12.708823947346259,P41)
p(13.17371670110741,13.44229418222412,P42)
p(12.176592041827368,11.21681814846157,P43)
p(11.702693699223033,12.097397708113544,P44)
p(12.677547999933859,9.401877241229057,P45)
p(12.417453650768508,8.436294034285062,P46)
p(11.711281238670036,9.144333951515035,P47)
p(11.451186889504685,8.178750744571039,P48)
p(11.68194478354065,9.30820635190106,P49)
p(12.382415270565458,12.830867942991404,P50)
p(11.323393959133634,14.201442224791997,P51)
p(12.248555330120519,13.821868203508057,P52)
p(11.457253899578571,13.210441964275342,P53)
p(10.745014477406212,8.886790661801012,P54)
p(11.766908610809933,10.304590388332674,P55)
p(10.532092528591665,13.590015985559281,P56)
p(10.861532809700236,9.87997920293482,P57)
p(10.946496636969519,10.876363239366432,P58)
p(10.868007607721541,12.648123709546166,P59)
p(10.435267306142027,11.735807578053748,P60)
p(9.87458885270098,12.762662686202138,P61)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P17,P24) s(P18,P24)
s(P24,P25) s(P18,P25) s(P48,P25) s(P54,P25)
s(P13,P26) s(P19,P26)
s(P21,P27) s(P23,P27) s(P61,P27)
s(P21,P28) s(P27,P28) s(P51,P28) s(P56,P28)
s(P26,P29) s(P19,P29) s(P24,P29)
s(P26,P30) s(P29,P30) s(P58,P30)
s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P32,P35) s(P34,P35)
s(P33,P36) s(P34,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42) s(P50,P42) s(P52,P42)
s(P36,P43) s(P37,P43)
s(P41,P44) s(P43,P44)
s(P35,P45)
s(P35,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P36,P49) s(P45,P49)
s(P44,P50) s(P52,P50) s(P53,P50)
s(P51,P52)
s(P51,P53) s(P52,P53)
s(P47,P54) s(P48,P54)
s(P43,P55) s(P49,P55)
s(P51,P56) s(P53,P56)
s(P49,P57) s(P55,P57) s(P54,P57)
s(P55,P58) s(P57,P58)
s(P44,P59) s(P56,P59) s(P60,P59)
s(P30,P60) s(P58,P60) s(P61,P60)
s(P14,P61) s(P59,P61)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P29,P24) abstand(P29,P24,A0) print(abs(P29,P24):,6.84,16.678) print(A0,7.98,16.678)
color(red) s(P30,P58) abstand(P30,P58,A1) print(abs(P30,P58):,6.84,16.416) print(A1,7.98,16.416)
color(red) s(P59,P60) abstand(P59,P60,A2) print(abs(P59,P60):,6.84,16.154) print(A2,7.98,16.154)
color(red) s(P61,P27) abstand(P61,P27,A3) print(abs(P61,P27):,6.84,15.892) print(A3,7.98,15.892)
color(red) s(P61,P60) abstand(P61,P60,A4) print(abs(P61,P60):,6.84,15.629) print(A4,7.98,15.629)
print(min=0.9230691038028407,6.84,15.367)
print(max=1.1699537346764985,6.84,15.105)
\geooff
\geoprint()
Ob man bei P12 noch einen Winkel einbauen könnte?
EDIT: Scheint nichts zu nützen. Aber der Winkel müsste wohl auch unten bei P20 sein.
\geo
ebene(479.36,539.25)
x(7.67,15.29)
y(8.37,16.93)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-146.3756349015957,58.46539820442564];
#P[2]=[-123.56197645951568,-0.20787441417995467]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,27,18); N(29,21,11); N(30,27,28); N(31,25,29);
#A(20,26,ab(20,26,[1,31],"gespiegelt"));
#N(61,30,59);
#R(19,28); R(13,29); R(30,59); R(31,60); R(31,61);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.674823726292309,10.92872257619373,P1)
p(8.037218583617141,9.99669791590597,P2)
p(8.663178187717486,10.776553398693993,P3)
p(9.02557304504232,9.844528738406233,P4)
p(8.399613440941975,9.06467325561821,P5)
p(9.651532649142665,10.624384221194255,P6)
p(8.643781710688577,11.175948028917999,P7)
p(7.945199195969117,11.8914775322428,P8)
p(8.914157180365386,12.138702984967068,P9)
p(8.215574665645924,12.854232488291867,P10)
p(9.184532650042193,13.101457941016138,P11)
p(8.485950135322732,13.816987444340938,P12)
p(9.540663097113768,11.61821918859725,P13)
p(9.08711729126268,9.790853987801464,P14)
p(9.372256327911808,8.832367822132491,P15)
p(10.059760178232514,9.558548554315745,P16)
p(10.344899214881643,8.600062388646773,P17)
p(10.084821320273035,9.723129025664113,P18)
p(11.032403065202347,9.326243120830027,P19)
p(11.317542101851476,8.367756955161054,P20)
p(9.292898067749125,13.226364862354124,P21)
p(9.400918261585266,14.220513562360116,P22)
p(10.20786619401166,13.629890980373304,P23)
p(10.315886387847799,14.624039680379296,P24)
p(11.122834320274192,14.033417098392484,P25)
p(11.230854514110334,15.027565798398474,P26)
p(9.973951768244138,10.716963993067107,P27)
p(10.890072873198859,10.316062357928834,P28)
p(9.991480582468586,12.510835359029326,P29)
p(10.779203321169962,11.309897325331828,P30)
p(10.811549225972323,13.083100524788994,P31)
p(14.892367847906957,11.022669940757108,P32)
p(14.554355110663302,10.081528405460185,P33)
p(13.908309001161307,10.844826790364369,P34)
p(13.570296263917648,9.903685255067446,P35)
p(14.216342373419643,9.140386870163262,P36)
p(12.924250154415653,10.66698363997163,P37)
p(13.917303205247368,11.244590968681742,P38)
p(14.597024774393851,11.978061205594626,P39)
p(13.621960131734257,12.199982233519258,P40)
p(14.301681700880739,12.933452470432144,P41)
p(13.326617058221148,13.155373498356774,P42)
p(14.006338627367633,13.888843735269658,P43)
p(13.009213965198526,11.663367677809074,P44)
p(13.510169950119707,9.848426776221316,P45)
p(13.250075616230255,8.882843565162526,P46)
p(12.543903192930319,9.59088347122058,P47)
p(12.283808859040866,8.62530026016179,P48)
p(12.514566734874776,9.754755874688586,P49)
p(11.57763643574093,9.333340166219843,P50)
p(13.215037196984953,13.277417495830813,P51)
p(13.081177256281862,14.268417756312598,P52)
p(12.289875825899186,13.65699151687375,P53)
p(12.156015885196092,14.647991777355536,P54)
p(11.364714454813408,14.036565537916688,P55)
p(12.59953054565765,10.751139912526032,P56)
p(11.69415475157367,10.326528712147613,P57)
p(12.535315627838475,12.543947258917926,P58)
p(11.779118562356548,11.322912749985058,P59)
p(11.700629538413557,13.094673263497844,P60)
p(11.267889252552209,12.182357101177724,P61)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P48,P20) s(P50,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P54,P26) s(P55,P26)
s(P13,P27) s(P18,P27)
s(P27,P28) s(P18,P28)
s(P21,P29) s(P11,P29)
s(P27,P30) s(P28,P30)
s(P25,P31) s(P29,P31)
s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P33,P36) s(P35,P36)
s(P34,P37) s(P35,P37)
s(P32,P38)
s(P32,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P37,P44) s(P38,P44)
s(P36,P45)
s(P36,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P37,P49) s(P45,P49)
s(P47,P50) s(P48,P50)
s(P43,P51)
s(P43,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P53,P55) s(P54,P55)
s(P44,P56) s(P49,P56)
s(P49,P57) s(P56,P57)
s(P42,P58) s(P51,P58)
s(P56,P59) s(P57,P59)
s(P55,P60) s(P58,P60)
s(P30,P61) s(P59,P61)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P19,P28) abstand(P19,P28,A0) print(abs(P19,P28):,7.67,16.934) print(A0,8.71,16.934)
color(red) s(P13,P29) abstand(P13,P29,A1) print(abs(P13,P29):,7.67,16.695) print(A1,8.71,16.695)
color(red) s(P30,P59) abstand(P30,P59,A2) print(abs(P30,P59):,7.67,16.457) print(A2,8.71,16.457)
color(red) s(P31,P60) abstand(P31,P60,A3) print(abs(P31,P60):,7.67,16.219) print(A3,8.71,16.219)
color(red) s(P31,P61) abstand(P31,P61,A4) print(abs(P31,P61):,7.67,15.981) print(A4,8.71,15.981)
print(min=0.9999999999999891,7.67,15.742)
print(max=1.000000000000007,7.67,15.504)
\geooff
\geoprint()
Vielleicht können wir eine/die 4/4-Lücke/n zwischen 57 und 63 Knoten füllen. Mit dieser Art Hüllen ist eine Menge möglich.
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1174, vom Themenstarter, eingetragen 2018-04-27
|
4 Stunden Arbeit und es will nicht - trotz dreier Winkel, die wirklich sehr schwer zu handhaben sind. Immerhin hat dieser 122er nur 2 falsche Kanten.
\geo
ebene(516.44,460.39)
x(7.09,15.29)
y(8.78,16.1)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-177.10018280213365,182.9441123401792];
#P[2]=[-180.12343870332464,120.06425980341669]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,13,27);
#A(20,26,ab(26,20,[1,28]));
#R(28,11); A(28,11); A(39,54);
#N(55,18,19); N(56,46,47); R(52,55); A(52,55); N(57,21,28); A(25,56);
#N(58,48,54);
#N(59,57,27); N(60,58,53); N(61,55,58); N(62,56,57); R(59,61); A(59,61);
#A(60,62); R(59,62); A(59,62); A(61,60);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.186764427032877,12.906066366262865,P1)
p(7.1387400212257095,11.907220203709858,P2)
p(8.0277783753728,12.365052929555702,P3)
p(7.979753969565631,11.366206767002694,P4)
p(7.090715615418542,10.90837404115685,P5)
p(8.86879232371272,11.824039492848538,P6)
p(8.057014911775397,12.41345689233305,P7)
p(8.048501987972244,13.413420656740703,P8)
p(8.918752472714765,12.920811182810889,P9)
p(8.910239548911612,13.920774947218542,P10)
p(9.780490033654134,13.428165473288725,P11)
p(9.771977109850981,14.428129237696378,P12)
p(8.971186919959804,12.818783352673465,P13)
p(8.056153805026218,11.169006161293746,P14)
p(7.799148747303129,10.202596103241394,P15)
p(8.764586936910804,10.46322822337829,P16)
p(8.507581879187716,9.496818165325935,P17)
p(8.997797758015833,10.832395606203606,P18)
p(9.473020068795392,9.75745028546283,P19)
p(9.216015011072303,8.791040227410479,P20)
p(10.269562171057334,13.560714050566093,P21)
p(10.771973228137417,14.425342947679573,P22)
p(11.269558289343772,13.557927760549287,P23)
p(11.771969346423855,14.422556657662767,P24)
p(12.26955440763021,13.55514147053248,P25)
p(12.771965464710293,14.41977036764596,P26)
p(9.100192354262918,11.827139466028534,P27)
p(9.894478434453408,12.434683392683741,P28)
p(14.801216048749719,10.304744228793572,P29)
p(14.849240454556885,11.30359039134658,P30)
p(13.960202100409798,10.845757665500736,P31)
p(14.008226506216964,11.844603828053744,P32)
p(14.897264860364054,12.302436553899586,P33)
p(13.119188152069874,11.386771102207902,P34)
p(13.930965564007197,10.797353702723388,P35)
p(13.93947848781035,9.797389938315735,P36)
p(13.069228003067831,10.28999941224555,P37)
p(13.077740926870984,9.290035647837897,P38)
p(12.207490442128462,9.782645121767711,P39)
p(12.216003365931616,8.782681357360058,P40)
p(13.01679355582279,10.392027242382973,P41)
p(13.93182667075638,12.04180443376269,P42)
p(14.188831728479464,13.008214491815044,P43)
p(13.223393538871791,12.74758237167815,P44)
p(13.480398596594886,13.713992429730498,P45)
p(12.990182717766764,12.37841498885283,P46)
p(12.5149604069872,13.45336030959361,P47)
p(11.718418304725262,9.650096544490346,P48)
p(11.216007247645177,8.785467647376866,P49)
p(10.718422186438824,9.652882834507151,P50)
p(10.21601112935874,8.788253937393671,P51)
p(9.718426068152388,9.655669124523957,P52)
p(12.887788121519678,11.383671129027903,P53)
p(12.09350204132919,10.776127202372697,P54)
p(9.975431125875492,10.622079182576302,P55)
p(12.012549349907104,12.588731412480136,P56)
p(10.84565523584573,12.743329942142939,P57)
p(11.142325239936866,10.4674806529135,P58)
p(10.051369155655241,12.135786015487733,P59)
p(11.936611320127353,11.075024579568709,P60)
p(10.665061481327914,11.346240748001149,P61)
p(11.322918994454682,11.86456984705529,P62)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25) s(P56,P25)
s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28) s(P11,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P54,P39)
s(P38,P40) s(P39,P40)
s(P34,P41) s(P35,P41)
s(P33,P42)
s(P33,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P34,P46) s(P42,P46)
s(P44,P47) s(P45,P47)
s(P40,P48)
s(P40,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52) s(P55,P52)
s(P41,P53) s(P46,P53)
s(P41,P54) s(P53,P54)
s(P18,P55) s(P19,P55)
s(P46,P56) s(P47,P56)
s(P21,P57) s(P28,P57)
s(P48,P58) s(P54,P58)
s(P57,P59) s(P27,P59) s(P61,P59) s(P62,P59)
s(P58,P60) s(P53,P60) s(P62,P60)
s(P55,P61) s(P58,P61) s(P60,P61)
s(P56,P62) s(P57,P62)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P28,P11) abstand(P28,P11,A0) print(abs(P28,P11):,7.09,16.096) print(A0,8.12,16.096)
color(red) s(P52,P55) abstand(P52,P55,A1) print(abs(P52,P55):,7.09,15.858) print(A1,8.12,15.858)
color(red) s(P59,P61) abstand(P59,P61,A2) print(abs(P59,P61):,7.09,15.62) print(A2,8.12,15.62)
color(red) s(P59,P62) abstand(P59,P62,A3) print(abs(P59,P62):,7.09,15.381) print(A3,8.12,15.381)
print(min=0.9999999999999909,7.09,15.143)
print(max=1.3001527612438701,7.09,14.905)
\geooff
\geoprint()
Dieser 120er will auch nicht.
\geo
ebene(471.59,528.8)
x(7.09,14.58)
y(9.5,17.9)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-177.10018280213416,232.9441123401795];
#P[2]=[-180.12343870332526,170.06425980341646]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,13,27);
#A(20,26,ab(26,20,[1,28]));
#N(55,18,19); N(56,46,47);
#N(57,21,28); A(25,56); N(58,48,54); N(59,28,27); N(60,54,53);
#
#R(52,55); R(59,54); R(55,59); R(58,41);R(39,58);
#
#A(52,55); A(11,57); A(39,58); A(13,57); A(41,58); A(56,60); A(55,59); A(59,54);
#A(28,60);
#Z(54,41); Z(13,28);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.186764427032893,13.700316131693693,P1)
p(7.138740021225723,12.701469969140687,P2)
p(8.027778375372813,13.159302694986529,P3)
p(7.9797539695656425,12.160456532433521,P4)
p(7.090715615418554,11.70262380658768,P5)
p(8.868792323712732,12.618289258279363,P6)
p(8.17088993937606,13.52284225768601,P7)
p(7.83252406660317,14.463856888891414,P8)
p(8.81664957894634,14.286383014883729,P9)
p(8.478283706173448,15.22739764608913,P10)
p(9.462409218516617,15.049923772081446,P11)
p(9.124043345743726,15.990938403286847,P12)
p(9.169683538059953,13.571947728135662,P13)
p(8.063542654581505,11.934156853631606,P14)
p(7.7776426355556865,10.975897400706128,P15)
p(8.750469674718639,11.207430447750053,P16)
p(8.46456965569282,10.249170994824574,P17)
p(9.015898764147524,11.629168590624197,P18)
p(9.43739669485577,10.480704041868501,P19)
p(9.151496675829952,9.522444588943022,P20)
p(9.616730370547346,15.12073182115238,P21)
p(10.124007864814418,15.982514591814525,P22)
p(10.616694889618039,15.112308009680053,P23)
p(11.123972383885109,15.974090780342198,P24)
p(11.61665940868873,15.103884198207728,P25)
p(12.1239369029558,15.965666968869872,P26)
p(9.316789978494743,12.582827060480493,P27)
p(10.099840383874948,13.20478530878491,P28)
p(14.08866915175286,11.787795426119198,P29)
p(14.13669355756003,12.786641588672206,P30)
p(13.24765520341294,12.328808862826365,P31)
p(13.295679609220112,13.32765502537937,P32)
p(14.1847179633672,13.785487751225212,P33)
p(12.40664125507302,12.869822299533531,P34)
p(13.10454363940969,11.965269300126884,P35)
p(13.442909512182583,11.02425466892148,P36)
p(12.458783999839413,11.201728542929166,P37)
p(12.797149872612305,10.260713911723762,P38)
p(11.813024360269136,10.438187785731447,P39)
p(12.151390233042026,9.497173154526045,P40)
p(12.105750040725802,11.916163829677233,P41)
p(13.211890924204246,13.553954704181288,P42)
p(13.497790943230067,14.512214157106765,P43)
p(12.524963904067118,14.28068111006284,P44)
p(12.810863923092937,15.238940562988319,P45)
p(12.259534814638233,13.858942967188696,P46)
p(11.838036883930043,15.007407515944365,P47)
p(11.658703208238405,10.367379736660515,P48)
p(11.151425713971335,9.50559696599837,P49)
p(10.658738689167714,10.375803548132842,P50)
p(10.151461194900644,9.514020777470696,P51)
p(9.658774170097024,10.384227359605166,P52)
p(11.95864360029101,12.905284497332401,P53)
p(11.175593194910805,12.283326249027983,P54)
p(9.969312100527004,11.327501539036275,P55)
p(11.306121478258756,14.160610018776625,P56)
p(10.008309988285523,14.20058759171222,P57)
p(11.267123590500224,11.287523966100673,P58)
p(10.24694682430974,12.215664641129742,P59)
p(11.028486754476013,13.272446916683151,P60)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11) s(P57,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13) s(P57,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25) s(P56,P25)
s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26)
s(P13,P27) s(P18,P27)
s(P27,P28) s(P60,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P58,P39)
s(P38,P40) s(P39,P40)
s(P34,P41) s(P35,P41) s(P58,P41)
s(P33,P42)
s(P33,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P34,P46) s(P42,P46)
s(P44,P47) s(P45,P47)
s(P40,P48)
s(P40,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52) s(P55,P52)
s(P41,P53) s(P46,P53)
s(P53,P54)
s(P18,P55) s(P19,P55) s(P59,P55)
s(P46,P56) s(P47,P56) s(P60,P56)
s(P21,P57) s(P28,P57)
s(P48,P58) s(P54,P58)
s(P28,P59) s(P27,P59) s(P54,P59)
s(P54,P60) s(P53,P60)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P52,P55) abstand(P52,P55,A0) print(abs(P52,P55):,7.09,17.897) print(A0,8.12,17.897)
color(red) s(P59,P54) abstand(P59,P54,A1) print(abs(P59,P54):,7.09,17.659) print(A1,8.12,17.659)
color(red) s(P55,P59) abstand(P55,P59,A2) print(abs(P55,P59):,7.09,17.421) print(A2,8.12,17.421)
color(red) s(P58,P41) abstand(P58,P41,A3) print(abs(P58,P41):,7.09,17.182) print(A3,8.12,17.182)
color(red) s(P39,P58) abstand(P39,P58,A4) print(abs(P39,P58):,7.09,16.944) print(A4,8.12,16.944)
print(min=0.9305453969421396,7.09,16.706)
print(max=1.0480851115703853,7.09,16.467)
\geooff
\geoprint()
Fast 128er mit 2 falschen Kanten.
\geo
ebene(494.59,486.02)
x(7.16,15.02)
y(8.68,16.4)
form(.)
#//Eingabe war:
#
#4/4 fast mit 128
#
#
#
#
#
#P[1]=[-178.81009046250912,180.12656606819127];
#P[2]=[-178.53832588563273,117.17466319541211]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,13,27);
#A(20,26,ab(26,20,[1,28]));
#N(55,19,52); N(56,47,25); N(57,21,28); N(58,48,54); N(59,57,27); N(60,58,53);
#N(61,55,58); N(62,56,57); N(63,18,55); N(64,46,56);
#
#R(63,61); A(63,61); A(62,64);
#R(59,63); A(59,63); A(64,60);
#R(59,62); A(59,62); A(61,60);
#R(28,11); A(28,11); A(39,54);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.159602551869638,12.861309656950532,P1)
p(7.163919530898367,11.861318975147913,P2)
p(8.02777837537279,12.365052929555707,P3)
p(8.03209535440152,11.36506224775309,P4)
p(7.168236509927097,10.861328293345295,P5)
p(8.895954198875945,11.868796202160883,P6)
p(8.090464580858818,12.495938772798354,P7)
p(7.941454033843197,13.4847743793974,P8)
p(8.872316062832377,13.119403495245221,P9)
p(8.723305515816755,14.108239101844267,P10)
p(9.654167544805935,13.742868217692088,P11)
p(9.505156997790314,14.731703824291134,P12)
p(9.021493224775114,12.860884884172874,P13)
p(8.13604864494893,11.11300203314443,P14)
p(7.870098429569497,10.149015268225101,P15)
p(8.83791056459133,10.400689008024234,P16)
p(8.571960349211897,9.436702243104905,P17)
p(9.111384727756851,10.892277033262447,P18)
p(9.53977248423373,9.688375982904038,P19)
p(9.273822268854298,8.724389217984708,P20)
p(9.992050086140502,13.858242250713444,P21)
p(10.505043453913219,14.716634820940612,P22)
p(10.991936542263407,13.843173247362923,P23)
p(11.504929910036124,14.701565817590092,P24)
p(11.991822998386311,13.828104244012401,P25)
p(12.504816366159028,14.68649681423957,P26)
p(9.236923753656018,11.884365715274438,P27)
p(9.97489889676408,12.559193610485234,P28)
p(14.619036083143689,10.549576375273746,P29)
p(14.614719104114961,11.549567057076363,P30)
p(13.750860259640536,11.04583310266857,P31)
p(13.746543280611807,12.04582378447119,P32)
p(14.610402125086228,12.549557738878981,P33)
p(12.882684436137383,11.542089830063395,P34)
p(13.688174054154507,10.914947259425926,P35)
p(13.837184601170131,9.926111652826878,P36)
p(12.90632257218095,10.291482536979057,P37)
p(13.055333119196572,9.302646930380012,P38)
p(12.12447109020739,9.668017814532192,P39)
p(12.273481637223014,8.679182207933144,P40)
p(12.757145410238213,10.550001148051404,P41)
p(13.642589990064398,12.297883999079849,P42)
p(13.908540205443831,13.261870763999177,P43)
p(12.940728070421994,13.010197024200048,P44)
p(13.20667828580143,13.974183789119373,P45)
p(12.667253907256478,12.518608998961831,P46)
p(12.238866150779598,13.72251004932024,P47)
p(11.786588548872825,9.552643781510834,P48)
p(11.273595181100108,8.694251211283666,P49)
p(10.78670209274992,9.567712784861357,P50)
p(10.273708724977203,8.709320214634188,P51)
p(9.786815636627017,9.582781788211877,P52)
p(12.54171488135731,11.52652031694984,P53)
p(11.803739738249247,10.851692421739044,P54)
p(10.05276585200645,10.546768553131205,P55)
p(11.72587278300688,12.864117479093071,P56)
p(10.74370068923658,13.198680751787602,P57)
p(11.034937945776747,10.212205280436677,P58)
p(10.005725546128522,12.523852856576799,P59)
p(11.772913088884811,10.887033175647474,P60)
p(10.819507416895844,11.188724449335114,P61)
p(10.959131218117484,12.222161582889164,P62)
p(9.880186520229353,11.531764174564808,P63)
p(11.898452114783975,11.879121857659468,P64)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28) s(P11,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P54,P39)
s(P38,P40) s(P39,P40)
s(P34,P41) s(P35,P41)
s(P33,P42)
s(P33,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P34,P46) s(P42,P46)
s(P44,P47) s(P45,P47)
s(P40,P48)
s(P40,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P41,P53) s(P46,P53)
s(P41,P54) s(P53,P54)
s(P19,P55) s(P52,P55)
s(P47,P56) s(P25,P56)
s(P21,P57) s(P28,P57)
s(P48,P58) s(P54,P58)
s(P57,P59) s(P27,P59) s(P63,P59) s(P62,P59)
s(P58,P60) s(P53,P60)
s(P55,P61) s(P58,P61) s(P60,P61)
s(P56,P62) s(P57,P62) s(P64,P62)
s(P18,P63) s(P55,P63) s(P61,P63)
s(P46,P64) s(P56,P64) s(P60,P64)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P63,P61) abstand(P63,P61,A0) print(abs(P63,P61):,7.16,16.4) print(A0,8.19,16.4)
color(red) s(P59,P63) abstand(P59,P63,A1) print(abs(P59,P63):,7.16,16.161) print(A1,8.19,16.161)
color(red) s(P59,P62) abstand(P59,P62,A2) print(abs(P59,P62):,7.16,15.923) print(A2,8.19,15.923)
color(red) s(P28,P11) abstand(P28,P11,A3) print(abs(P28,P11):,7.16,15.685) print(A3,8.19,15.685)
print(min=0.999999999999995,7.16,15.447)
print(max=1.2263580944712662,7.16,15.208)
\geooff
\geoprint()
Fast 126er, wenn sich die Knoten in der Mitte treffen würden.
\geo
ebene(461.08,493.59)
x(7.09,14.41)
y(8.52,16.36)
form(.)
#//Eingabe war:
#
#4/4 fast mit 128
#
#
#
#
#
#P[1]=[-183.21875070412142,-12.900224351428024];
#P[2]=[-134.82010842189513,-53.15674378028819]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,13,27);
#A(20,26,ab(26,20,[1,28]));
#N(55,19,52); N(56,47,25); N(57,21,28); N(58,48,54); N(59,57,27); N(60,58,53);
#N(61,55,59); N(62,56,60);
#N(63,61,60); N(64,62,59);
#R(39,54); R(55,58); R(18,61); A(39,54); A(55,58); A(18,61); A(11,28); A(56,57);
#A(62,46);
#11
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.089571004614351,9.795079996697458,P1)
p(7.858383210210951,9.155605374428763,P2)
p(8.027778375372801,10.141153586349311,P3)
p(8.7965905809694,9.501678964080615,P4)
p(8.627195415807552,8.516130752160066,P5)
p(8.965985746131249,10.487227176001163,P6)
p(7.998316058265154,10.212431679891859,P7)
p(7.182506371481207,10.790752140319706,P8)
p(8.091251425132011,11.208103823514106,P9)
p(7.275441738348064,11.786424283941955,P10)
p(8.184186791998867,12.203775967136353,P11)
p(7.36837710521492,12.782096427564202,P12)
p(8.246043725605807,11.181261387752821,P13)
p(9.123393669922333,9.384339996877861,P14)
p(9.627185804591052,8.520515081142078,P15)
p(10.123384058705833,9.388724325859872,P16)
p(10.627176193374552,8.524899410124089,P17)
p(9.866849438241433,10.053125104781031,P18)
p(11.123374447489335,9.393108654841884,P19)
p(11.627166582158054,8.5292837391061,P20)
p(8.33558371920724,12.528105550071498,P21)
p(8.071942964449262,13.492726487243527,P22)
p(9.039149578441581,13.238735609750822,P23)
p(8.775508823683605,14.203356546922851,P24)
p(9.742715437675923,13.949365669430147,P25)
p(9.479074682917949,14.913986606602176,P26)
p(9.14690741771599,10.74715931653269,P27)
p(9.072418993172974,11.744381194857219,P28)
p(14.016670260461652,13.648190349010818,P29)
p(13.247858054865048,14.287664971279515,P30)
p(13.0784628897032,13.302116759358967,P31)
p(12.3096506841066,13.941591381627662,P32)
p(12.479045849268447,14.927139593548208,P33)
p(12.140255518944752,12.956043169707113,P34)
p(13.107925206810847,13.230838665816417,P35)
p(13.923734893594792,12.65251820538857,P36)
p(13.01498983994399,12.23516652219417,P37)
p(13.830799526727937,11.656846061766323,P38)
p(12.922054473077136,11.239494378571923,P39)
p(13.737864159861081,10.661173918144076,P40)
p(12.860197539470194,12.262008957955455,P41)
p(11.98284759515367,14.058930348830415,P42)
p(11.47905546048495,14.922755264566199,P43)
p(10.98285720637017,14.054546019848404,P44)
p(10.47906507170145,14.91837093558419,P45)
p(11.239391826834568,13.390145240927243,P46)
p(9.982866817586697,14.050161690866402,P47)
p(12.770657545868763,10.91516479563678,P48)
p(13.03429830062674,9.95054385846475,P49)
p(12.06709168663442,10.204534735957454,P50)
p(12.330732441392396,9.239913798785425,P51)
p(11.363525827400082,9.493904676278131,P52)
p(11.95933384736001,12.696111029175587,P53)
p(12.033822271903027,11.698889150851059,P54)
p(10.859733692731364,10.357729592013916,P55)
p(10.246507572344644,13.085540753694364,P56)
p(9.318209354553112,12.713704205134299,P57)
p(11.788031910522891,10.729566140573978,P58)
p(9.392697779096128,11.716482326809771,P59)
p(11.713543485979875,11.726788018898505,P60)
p(10.112639799621649,11.022448115058195,P61)
p(10.993601465454399,12.420822230650128,P62)
p(10.717765128697677,11.818578340656137,P63)
p(10.388476136378332,11.624692005052216,P64)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11) s(P28,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18) s(P61,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P54,P39)
s(P38,P40) s(P39,P40)
s(P34,P41) s(P35,P41)
s(P33,P42)
s(P33,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P34,P46) s(P42,P46)
s(P44,P47) s(P45,P47)
s(P40,P48)
s(P40,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P41,P53) s(P46,P53)
s(P41,P54) s(P53,P54)
s(P19,P55) s(P52,P55) s(P58,P55)
s(P47,P56) s(P25,P56) s(P57,P56)
s(P21,P57) s(P28,P57)
s(P48,P58) s(P54,P58)
s(P57,P59) s(P27,P59)
s(P58,P60) s(P53,P60)
s(P55,P61) s(P59,P61)
s(P56,P62) s(P60,P62) s(P46,P62)
s(P61,P63) s(P60,P63)
s(P62,P64) s(P59,P64)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P39,P54) abstand(P39,P54,A0) print(abs(P39,P54):,7.09,16.357) print(A0,8.12,16.357)
color(red) s(P55,P58) abstand(P55,P58,A1) print(abs(P55,P58):,7.09,16.119) print(A1,8.12,16.119)
color(red) s(P18,P61) abstand(P18,P61,A2) print(abs(P18,P61):,7.09,15.88) print(A2,8.12,15.88)
print(min=0.9999999999999709,7.09,15.642)
print(max=1.000000000000099,7.09,15.404)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1175, vom Themenstarter, eingetragen 2018-04-29
|
Info
Ich habe den neuen 4/11 schon im MGC integriert. Update der Paper und MathMagic kommt auch noch.
Ist der 4/11 Kern gleich geblieben? Oder muss ich den auch noch ändern?
Ich habe in einer 2-tägigen Sitzung unseren 4-reg. Beweis für Geombinatorics umgeschrieben. Mit der Einreichung warte ich aber noch etwas, da gerade so viele neue 4/4 Ideen auftauchen.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1176, eingetragen 2018-04-29
|
Der 4/11 Kern ist gleich geblieben, drum ist es auch weiterhin ne Team- Autoren-Schaft von uns dreien!
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1177, vom Themenstarter, eingetragen 2018-04-29
|
OK, das ist schön.
Ich habe diese Definition von (2, r)-regulären Graphen gefunden. hier
Das Paper ist von 2006. Wenn ich mich nicht irre, dann ist unsere Definition ja eine andere. Deshalb sollten wir doch (2; n)-regulär nehmen, also mit Semikolon. Im Thread haben wir ja sowieso unsere eigene Sprache.
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1178, vom Themenstarter, eingetragen 2018-04-29
|
Fast 122er.
\geo
ebene(504.92,485.2)
x(7.33,15.35)
y(8.23,15.93)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-155.2451595323765,135.66830761043124];
#P[2]=[-161.5551493773537,73.03285471476363]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,20,19,orange_angle);
#N(22,21,20); N(23,21,22); N(24,23,22); N(25,23,24); N(26,25,24); N(27,13,18);
#N(28,27,18);
#A(12,26,ab(26,12,[1,28]));
#N(55,52,11); N(56,25,39); N(57,21,56); N(58,48,55); N(59,57,56); N(60,58,55);
#N(61,27,59); N(62,53,60);
#R(19,28); A(46,54);
#R(28,57); A(58,54);
#R(61,60); A(59,62);
#R(13,61); A(40,62);
#
#A(19,28); A(28,57); A(13,61); A(61,60);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.533931369142696,12.155090429919714,P1)
p(7.433697210057812,11.16012655451893,P2)
p(8.345478281545146,11.570803164124841,P3)
p(8.245244122460262,10.575839288724058,P4)
p(7.333463050972927,10.165162679118147,P5)
p(9.157025193947598,10.98651589832997,P6)
p(8.498502809816644,11.89126864189571,P7)
p(8.24469345998029,12.858522907296306,P8)
p(9.20926490065424,12.594701119272303,P9)
p(8.955455550817884,13.561955384672899,P10)
p(9.920026991491834,13.298133596648896,P11)
p(9.666217641655479,14.26538786204949,P12)
p(9.49787730136783,11.92663282768886,P13)
p(8.274455197435168,10.5035910767097,P14)
p(8.097046713880392,9.519453774315977,P15)
p(9.038038860342633,9.85788217190753,P16)
p(8.860630376787856,8.873744869513805,P17)
p(9.13060594784247,9.986864947530023,P18)
p(9.801622523250098,9.212173267105358,P19)
p(9.624214039695323,8.228035964711635,P20)
p(10.124838054151661,9.093700793701249,P21)
p(10.62421377999121,8.227315264942703,P22)
p(11.124837794447549,9.092980093932319,P23)
p(11.624213520287098,8.226594565173773,P24)
p(12.124837534743437,9.092259394163388,P25)
p(12.624213260582986,8.225873865404843,P26)
p(9.471458055262701,10.926981876888913,P27)
p(10.115197144905204,10.161736828250087,P28)
p(14.75649953309577,10.336171297534621,P29)
p(14.856733692180656,11.331135172935408,P30)
p(13.944952620693318,10.920458563329493,P31)
p(14.045186779778202,11.915422438730278,P32)
p(14.956967851265539,12.32609904833619,P33)
p(13.133405708290868,11.504745829124365,P34)
p(13.791928092421822,10.599993085558626,P35)
p(14.045737442258176,9.632738820158028,P36)
p(13.08116600158423,9.896560608182034,P37)
p(13.334975351420583,8.929306342781437,P38)
p(12.370403910746653,9.19312813080545,P39)
p(12.792553600870635,10.564628899765474,P40)
p(14.015975704803298,11.987670650744633,P41)
p(14.193384188358072,12.97180795313836,P42)
p(13.252392041895833,12.633379555546806,P43)
p(13.429800525450608,13.61751685794053,P44)
p(13.159824954395996,12.504396779924313,P45)
p(12.488808378988367,13.279088460348976,P46)
p(12.666216862543141,14.2632257627427,P47)
p(12.165592848086803,13.397560933753086,P48)
p(11.666217122247255,14.26394646251163,P49)
p(11.165593107790915,13.398281633522016,P50)
p(10.666217381951366,14.26466716228056,P51)
p(10.16559336749503,13.399002333290948,P52)
p(12.818972846975765,11.564279850565423,P53)
p(12.17523375733326,12.329524899204248,P54)
p(10.419402717331382,12.43174806789035,P55)
p(11.871028184907088,10.059513659563986,P56)
p(10.96544251127196,9.635350262148778,P57)
p(11.324988390966519,12.855911465305539,P58)
p(11.050899070572438,10.631692159527647,P59)
p(11.239531831666017,11.859569567926671,P60)
p(10.370604095435905,11.364630592688293,P61)
p(11.919826806802563,11.126631134766036,P62)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P51,P12) s(P52,P12)
s(P7,P13) s(P6,P13) s(P61,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19) s(P28,P19)
s(P19,P20) s(P17,P20)
s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26) s(P38,P26) s(P39,P26)
s(P13,P27) s(P18,P27)
s(P27,P28) s(P18,P28) s(P57,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P34,P40) s(P35,P40) s(P62,P40)
s(P33,P41)
s(P33,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P34,P45) s(P41,P45)
s(P43,P46) s(P44,P46) s(P54,P46)
s(P44,P47) s(P46,P47)
s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P40,P53) s(P45,P53)
s(P45,P54) s(P53,P54)
s(P52,P55) s(P11,P55)
s(P25,P56) s(P39,P56)
s(P21,P57) s(P56,P57)
s(P48,P58) s(P55,P58) s(P54,P58)
s(P57,P59) s(P56,P59) s(P62,P59)
s(P58,P60) s(P55,P60)
s(P27,P61) s(P59,P61) s(P60,P61)
s(P53,P62) s(P60,P62)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P19,P20,MA12) m(P20,P21,MB12) b(P20,MA12,MB12)
pen(2)
color(red) s(P19,P28) abstand(P19,P28,A0) print(abs(P19,P28):,7.33,15.933) print(A0,8.37,15.933)
color(red) s(P28,P57) abstand(P28,P57,A1) print(abs(P28,P57):,7.33,15.695) print(A1,8.37,15.695)
color(red) s(P61,P60) abstand(P61,P60,A2) print(abs(P61,P60):,7.33,15.457) print(A2,8.37,15.457)
color(red) s(P13,P61) abstand(P13,P61,A3) print(abs(P13,P61):,7.33,15.218) print(A3,8.37,15.218)
print(min=0.9999999999999809,7.33,14.98)
print(max=1.0380262854234348,7.33,14.742)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1179, vom Themenstarter, eingetragen 2018-04-29
|
Fast 116er.
\geo
ebene(469.3,520.5)
x(7.07,13.85)
y(8.59,16.1)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-22.426028982229237,317.1329544426907];
#P[2]=[-87.39476758012242,293.1681410309724]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15);
#M(18,17,16,orange_angle);
#N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12);
#N(25,11,24); N(26,25,24); N(27,26,18); N(28,27,22);
#N(29,27,28); N(30,11,25);
#A(10,23,ab(23,10,[1,30]));
#
# R(29,58); R(29,30);R(16,26); R(28,39);
#
#A(16,26); A(28,39); A(29,30); A(54,45); A(9,56); A(57,58); A(29,58); A(30,57);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.676147849842163,14.579686812299991,P1)
p(8.737940479083711,14.233613222648149,P2)
p(9.506752684680304,13.594138600379445,P3)
p(8.568545313921852,13.248065010727602,P4)
p(7.79973310832526,13.887539632996306,P5)
p(9.337357519518445,12.608590388458898,P6)
p(10.17950891514559,13.715610636296626,P7)
p(10.676140301717705,14.583572194127076,P8)
p(11.179501367021132,13.71949601812371,P9)
p(11.676132753593247,14.587457575954158,P10)
p(10.330316685729121,12.727047529392658,P11)
p(8.519115402974927,13.192925269378206,P12)
p(7.557870570923257,12.917229108987902,P13)
p(8.277252865572926,12.222614745369802,P14)
p(7.316008033521255,11.946918584979496,P15)
p(8.035390328170923,11.252304221361397,P16)
p(7.074145496119252,10.976608060971092,P17)
p(8.066246522263066,11.102049497204868,P18)
p(7.678831479656815,10.180144087326829,P19)
p(8.670932505800629,10.305585523560605,P20)
p(8.283517463194379,9.383680113682566,P21)
p(9.275618489338193,9.509121549916342,P22)
p(8.888203446731941,8.5872161400383,P23)
p(8.425860833412063,12.197282971534424,P24)
p(9.418819999622738,12.315740112468184,P25)
p(9.02492730982571,11.396583679142244,P26)
p(8.799675262683305,10.422283152991225,P27)
p(9.797851992147468,10.361924087754705,P28)
p(9.351036111258894,11.256550025555399,P29)
p(10.230771014497481,11.732014535296964,P30)
p(10.888188350483025,8.594986903692467,P31)
p(11.82639572124148,8.941060493344311,P32)
p(11.057583515644884,9.580535115613015,P33)
p(11.995790886403338,9.926608705264858,P34)
p(12.76460309199993,9.287134082996154,P35)
p(11.226978680806747,10.566083327533558,P36)
p(10.3848272851796,9.459063079695833,P37)
p(9.888195898607483,8.591101521865385,P38)
p(9.384834833304124,9.455177697868718,P39)
p(10.234019514596065,10.447626186599804,P40)
p(12.045220797350263,9.981748446614253,P41)
p(13.00646562940193,10.257444607004558,P42)
p(12.287083334752264,10.95205897062266,P43)
p(13.248328166803935,11.227755131012964,P44)
p(12.528945872154265,11.922369494631063,P45)
p(13.490190704205936,12.198065655021367,P46)
p(12.498089678062122,12.072624218787592,P47)
p(12.885504720668372,12.994529628665632,P48)
p(11.89340369452456,12.869088192431855,P49)
p(12.28081873713081,13.790993602309895,P50)
p(11.288717710986997,13.665552166076118,P51)
p(12.138475366913127,10.977390744458036,P52)
p(11.145516200702453,10.858933603524275,P53)
p(11.53940889049948,11.778090036850216,P54)
p(11.764660937641885,12.752390563001235,P55)
p(10.766484208177722,12.812749628237754,P56)
p(11.213300089066296,11.918123690437062,P57)
p(10.333565185827707,11.442659180695495,P58)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9) s(P56,P9)
s(P8,P10) s(P9,P10) s(P50,P10) s(P51,P10)
s(P7,P11) s(P6,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16) s(P26,P16)
s(P16,P17) s(P15,P17)
s(P17,P18)
s(P18,P19) s(P17,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P38,P23) s(P39,P23)
s(P6,P24) s(P12,P24)
s(P11,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P26,P27) s(P18,P27)
s(P27,P28) s(P22,P28) s(P39,P28)
s(P27,P29) s(P28,P29) s(P30,P29) s(P58,P29)
s(P11,P30) s(P25,P30) s(P57,P30)
s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P32,P35) s(P34,P35)
s(P33,P36) s(P34,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P36,P40) s(P37,P40)
s(P35,P41)
s(P35,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P36,P52) s(P41,P52)
s(P40,P53) s(P52,P53)
s(P52,P54) s(P53,P54) s(P45,P54)
s(P47,P55) s(P54,P55)
s(P51,P56) s(P55,P56)
s(P55,P57) s(P56,P57) s(P58,P57)
s(P40,P58) s(P53,P58)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12)
pen(2)
color(red) s(P29,P58) abstand(P29,P58,A0) print(abs(P29,P58):,7.07,16.104) print(A0,8.01,16.104)
color(red) s(P29,P30) abstand(P29,P30,A1) print(abs(P29,P30):,7.07,15.887) print(A1,8.01,15.887)
color(red) s(P16,P26) abstand(P16,P26,A2) print(abs(P16,P26):,7.07,15.671) print(A2,8.01,15.671)
color(red) s(P28,P39) abstand(P28,P39,A3) print(abs(P28,P39):,7.07,15.454) print(A3,8.01,15.454)
print(min=0.9963795406722769,7.07,15.237)
print(max=1.0000000000000067,7.07,15.021)
\geooff
\geoprint()
Fast 116er #2.
\geo
ebene(443.6,534.62)
x(7.48,13.89)
y(8.4,16.12)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-33.24662815963998,318.12773339202505];
#P[2]=[-93.66657101010139,284.294616733833]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15);
#M(18,17,16,orange_angle);
#N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12);
#N(25,11,24); N(26,25,24); N(27,26,18); N(28,27,22);
#N(29,25,27);
#A(10,23,ab(23,10,[1,29]));
#N(57,28,39); N(58,55,11);
#R(16,26); R(29,57); R(29,58); R(28,38);
#
#A(16,26); A(29,57); A(29,58); A(28,38); A(44,53); A(57,56); A(9,55); A(56,58);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.519888606960714,14.594052320430249,P1)
p(8.647369962663909,14.10547150280182,P2)
p(9.506752684680302,13.594138600379441,P3)
p(8.634234040383497,13.105557782751013,P4)
p(7.774851318367103,13.616890685173392,P5)
p(9.493616762399892,12.594224880328635,P6)
p(10.024918529097334,13.730950485333903,P7)
p(10.519871683275428,14.599870145123667,P8)
p(11.024901605412047,13.736768310027323,P9)
p(11.519854759590139,14.605687969817087,P10)
p(10.464726409273108,12.832858603322217,P11)
p(8.587929439578975,13.034736093328085,P12)
p(7.677229713505243,12.621667081019934,P13)
p(8.490307834717115,12.03951248917463,P14)
p(7.579608108643384,11.626443476866479,P15)
p(8.392686229855256,11.044288885021174,P16)
p(7.481986503781525,10.631219872713022,P17)
p(8.460155926935279,10.839028870610257,P18)
p(8.151039086672395,9.888004802005318,P19)
p(9.129208509826148,10.095813799902553,P20)
p(8.820091669563263,9.144789731297616,P21)
p(9.798261092717016,9.352598729194849,P22)
p(9.489144252454132,8.401574660589912,P23)
p(8.662886749927189,12.037549349721171,P24)
p(9.633996396800404,12.276183072714753,P25)
p(9.355104439675896,11.315860587165622,P26)
p(9.312930857748247,10.316750288456118,P27)
p(10.307554227574302,10.213191840245154,P28)
p(9.591822814872753,11.27707277400525,P29)
p(11.489110405083554,8.413210309976748,P30)
p(12.361629049380364,8.901791127605176,P31)
p(11.502246327363972,9.413124030027554,P32)
p(12.374764971660776,9.901704847655985,P33)
p(13.23414769367717,9.390371945233609,P34)
p(11.515382249644382,10.413037750078363,P35)
p(10.984080482946942,9.276312145073092,P36)
p(10.489127328768847,8.40739248528333,P37)
p(9.984097406632214,9.270494320379681,P38)
p(10.544272602771166,10.17440402708478,P39)
p(12.421069572465298,9.972526537078911,P40)
p(13.33176929853903,10.385595549387062,P41)
p(12.518691177327158,10.967750141232367,P42)
p(13.429390903400886,11.38081915354052,P43)
p(12.616312782189016,11.962973745385824,P44)
p(13.527012508262748,12.376042757693977,P45)
p(12.548843085108993,12.16823375979674,P46)
p(12.857959925371878,13.119257828401679,P47)
p(11.879790502218125,12.911448830504444,P48)
p(12.18890734248101,13.862472899109383,P49)
p(11.21073791932732,13.654663901212126,P50)
p(12.346112262117083,10.969713280685825,P51)
p(11.375002615243867,10.731079557692244,P52)
p(11.653894572368376,11.691402043241377,P53)
p(11.696068154296025,12.690512341950878,P54)
p(10.701444784469974,12.794070790161843,P55)
p(11.417176197171518,11.730189856401747,P56)
p(10.586446184698813,11.173514325794283,P57)
p(10.422552827345454,11.833748304612715,P58)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9) s(P55,P9)
s(P8,P10) s(P9,P10) s(P49,P10) s(P50,P10)
s(P7,P11) s(P6,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16) s(P26,P16)
s(P16,P17) s(P15,P17)
s(P17,P18)
s(P18,P19) s(P17,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P37,P23) s(P38,P23)
s(P6,P24) s(P12,P24)
s(P11,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P26,P27) s(P18,P27)
s(P27,P28) s(P22,P28) s(P38,P28)
s(P25,P29) s(P27,P29) s(P57,P29) s(P58,P29)
s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P31,P34) s(P33,P34)
s(P32,P35) s(P33,P35)
s(P30,P36)
s(P30,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P35,P39) s(P36,P39)
s(P34,P40)
s(P34,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44) s(P53,P44)
s(P43,P45) s(P44,P45)
s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P35,P51) s(P40,P51)
s(P39,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P46,P54) s(P53,P54)
s(P50,P55) s(P54,P55)
s(P52,P56) s(P54,P56) s(P58,P56)
s(P28,P57) s(P39,P57) s(P56,P57)
s(P55,P58) s(P11,P58)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12)
pen(2)
color(red) s(P16,P26) abstand(P16,P26,A0) print(abs(P16,P26):,7.48,16.122) print(A0,8.42,16.122)
color(red) s(P29,P57) abstand(P29,P57,A1) print(abs(P29,P57):,7.48,15.905) print(A1,8.42,15.905)
color(red) s(P29,P58) abstand(P29,P58,A2) print(abs(P29,P58):,7.48,15.689) print(A2,8.42,15.689)
color(red) s(P28,P38) abstand(P28,P38,A3) print(abs(P28,P38):,7.48,15.472) print(A3,8.42,15.472)
print(min=0.9966458392902035,7.48,15.256)
print(max=1.0000000000000153,7.48,15.039)
\geooff
\geoprint()
Versuch.
\geo
ebene(455.76,510.64)
x(7.14,13.73)
y(8.54,15.91)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-52.03833129803893,318.1013122527738];
#P[2]=[-113.03954120151225,285.32782194166646]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15);
#M(18,17,16,orange_angle);
#N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12);
#N(25,11,24); N(26,16,18);
#A(10,23,ab(23,10,[1,26]));
#N(51,22,35); N(52,47,9); N(53,51,36); N(54,52,11); N(55,51,53); N(56,52,54);
#
#R(24,26); R(25,26); R(49,53); A(24,26); A(25,26); A(49,53); A(50,49); A(50,48);
#A(25,54);
#
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.248519410420359,14.593670775272926,P1)
p(8.36760674393251,14.120391920873885,P2)
p(9.21793458816,13.594138600379441,P3)
p(8.337021921672152,13.120859745980399,P4)
p(7.486694077444661,13.647113066474844,P5)
p(9.187349765899642,12.594606425485953,P6)
p(9.757453438675771,13.732865248522709,P7)
p(10.248465878431798,14.60401780921735,P8)
p(10.75739990668721,13.743212282467134,P9)
p(11.248412346443237,14.614364843161775,P10)
p(10.16199846220037,12.818347165627962,P11)
p(8.289875265582284,13.051378243737549,P12)
p(7.372363181103954,12.653670342337247,P13)
p(8.175544369241576,12.057935519599951,P14)
p(7.258032284763246,11.660227618199649,P15)
p(8.061213472900869,11.064492795462353,P16)
p(7.14370138842254,10.666784894062053,P17)
p(8.110298064701519,10.923087187080338,P18)
p(7.848964023364068,9.957838763699996,P19)
p(8.815560699643047,10.214141056718281,P20)
p(8.554226658305595,9.24889263333794,P21)
p(9.520823334584573,9.505194926356225,P22)
p(9.259489293247123,8.539946502975884,P23)
p(8.34672063620497,12.052995249171449,P24)
p(9.321369332505698,12.276735989313458,P25)
p(9.027810149179846,11.32079508848064,P26)
p(11.25938222927,8.56064057086473,P27)
p(12.140294895757847,9.033919425263774,P28)
p(11.289967051530358,9.560172745758218,P29)
p(12.170879718018206,10.033451600157258,P30)
p(13.0212075622457,9.507198279662814,P31)
p(11.320551873790714,10.559704920651704,P32)
p(10.750448201014583,9.42144609761495,P33)
p(10.259435761258556,8.550293536920309,P34)
p(9.750501733003135,9.411099063670529,P35)
p(10.345903177489987,10.335964180509697,P36)
p(12.218026374108074,10.10293310240011,P37)
p(13.135538458586407,10.500641003800414,P38)
p(12.332357270448783,11.096375826537708,P39)
p(13.249869354927114,11.494083727938008,P40)
p(12.44668816678949,12.089818550675306,P41)
p(13.364200251267821,12.487526452075606,P42)
p(12.39760357498884,12.231224159057321,P43)
p(12.658937616326293,13.196472582437663,P44)
p(11.692340940047313,12.940170289419378,P45)
p(11.953674981384765,13.905418712799719,P46)
p(10.987078305105786,13.649116419781434,P47)
p(12.161181003485389,11.101316096966208,P48)
p(11.18653230718466,10.8775753568242,P49)
p(11.480091490510514,11.833516257657019,P50)
p(10.011835774340607,10.376347487050865,P51)
p(10.496065865349756,12.777963859086793,P52)
p(10.29716870467539,11.334775950143737,P53)
p(10.210732935014965,11.819535395993922,P54)
p(9.324478842759495,11.102667284803477,P55)
p(11.183422796930863,12.051644061334175,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10) s(P46,P10) s(P47,P10)
s(P7,P11) s(P6,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P17,P18)
s(P18,P19) s(P17,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P34,P23) s(P35,P23)
s(P6,P24) s(P12,P24) s(P26,P24)
s(P11,P25) s(P24,P25) s(P26,P25) s(P54,P25)
s(P16,P26) s(P18,P26)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P28,P30) s(P29,P30)
s(P28,P31) s(P30,P31)
s(P29,P32) s(P30,P32)
s(P27,P33)
s(P27,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P32,P36) s(P33,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P32,P48) s(P37,P48)
s(P36,P49) s(P48,P49) s(P53,P49)
s(P41,P50) s(P43,P50) s(P49,P50) s(P48,P50)
s(P22,P51) s(P35,P51)
s(P47,P52) s(P9,P52)
s(P51,P53) s(P36,P53)
s(P52,P54) s(P11,P54)
s(P51,P55) s(P53,P55)
s(P52,P56) s(P54,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12)
pen(2)
color(red) s(P24,P26) abstand(P24,P26,A0) print(abs(P24,P26):,7.14,15.914) print(A0,8.08,15.914)
color(red) s(P25,P26) abstand(P25,P26,A1) print(abs(P25,P26):,7.14,15.697) print(A1,8.08,15.697)
color(red) s(P49,P53) abstand(P49,P53,A2) print(abs(P49,P53):,7.14,15.481) print(A2,8.08,15.481)
print(min=0.9999999999999937,7.14,15.264)
print(max=1.0000000000000087,7.14,15.048)
\geooff
\geoprint()
Jetzt haben wir schon fast richtige 4/4 mit nur zwei leicht falschen Kanten für 108(3x), 112, 116(2x), 120, 122, 128.
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1180, vom Themenstarter, eingetragen 2018-05-01
|
Fast 116er. Nette Idee, haut aber leider nicht hin. Vielleicht den gelben Winkel bei P23 ansetzen?
\geo
ebene(443.13,552.91)
x(7.17,13.57)
y(8.35,16.33)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[-55.66368498849954,318.11729891115306];
#P[2]=[-114.86606289902058,282.1961668772135]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15);
#M(18,17,16,orange_angle);
#N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12);
#N(25,11,24); N(26,24,16);
#A(10,23,ab(23,10,[1,26])); R(35,36); R(18,26); A(35,36); A(18,26); A(11,9);
#A(43,50);
#N(51,22,26); N(52,47,50); N(53,51,49); N(54,52,25); N(55,51,53); N(56,53,49);
#N(57,52,54); N(58,54,25);
#R(55,56); R(55,58); R(56,57); A(55,56); A(57,58); A(55,58); A(56,57);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.196166022815774,14.593901637085061,P1)
p(8.341230117936142,14.075167988140208,P2)
p(9.217934588160002,13.594138600379436,P3)
p(8.36299868328037,13.075404951434582,P4)
p(7.486294213056509,13.556434339195352,P5)
p(9.23970315350423,12.594375563673811,P6)
p(9.699221716406303,13.729647641348766,P7)
p(10.196159785240878,14.597433649384712,P8)
p(10.699215478831405,13.733179653648417,P9)
p(11.196153547665983,14.600965661684363,P10)
p(10.202277409996833,12.865393645612473,P11)
p(8.295112944517204,12.968376298149815,P12)
p(7.38143037634171,12.56194775017092,P13)
p(8.190249107802403,11.973889709125382,P14)
p(7.276566539626909,11.567461161146486,P15)
p(8.085385271087603,10.97940312010095,P16)
p(7.171702702912108,10.572974572122053,P17)
p(8.149249972873147,10.783690814950456,P18)
p(7.842961957172035,9.83175192434987,P19)
p(8.820509227133075,10.042468167178273,P20)
p(8.514221211431963,9.090529276577685,P21)
p(9.491768481393002,9.30124551940609,P22)
p(9.185480465691889,8.349306628805502,P23)
p(8.450306410519595,11.98049220165359,P24)
p(9.412880667012198,12.25151028359225,P25)
p(9.062932541048642,11.190119362929353,P26)
p(11.185467990542099,8.356370653404802,P27)
p(12.04040389542173,8.875104302349659,P28)
p(11.163699425197867,9.356133690110429,P29)
p(12.018635330077501,9.874867339055285,P30)
p(12.895339800301363,9.393837951294511,P31)
p(11.141930859853641,10.355896726816056,P32)
p(10.682412296951568,9.220624649141099,P33)
p(10.185474228116986,8.352838641105155,P34)
p(9.68241853452646,9.21709263684145,P35)
p(10.179356603361043,10.084878644877392,P36)
p(12.08652106884067,9.981895992340052,P37)
p(13.000203637016163,10.388324540318946,P38)
p(12.191384905555468,10.976382581364481,P39)
p(13.105067473730962,11.382811129343377,P40)
p(12.296248742270269,11.970869170388916,P41)
p(13.209931310445763,12.377297718367812,P42)
p(12.232384040484725,12.16658147553941,P43)
p(12.538672056185835,13.118520366139997,P44)
p(11.561124786224797,12.907804123311593,P45)
p(11.867412801925909,13.85974301391218,P46)
p(10.889865531963563,13.649026771084197,P47)
p(11.931327602838277,10.969780088836277,P48)
p(10.968753346345675,10.698762006897613,P49)
p(11.318701472309229,11.760152927560512,P50)
p(9.034406823476841,10.19052630401137,P51)
p(11.34722718987902,12.759745986478555,P52)
p(10.001580084911259,10.44464415545449,P53)
p(10.380053928445609,12.505628135035403,P54)
p(9.297920939297367,11.15518184396505,P55)
p(10.265094200731783,11.409299695408173,P56)
p(11.083713074059308,11.795090446524652,P57)
p(10.116539812625897,11.5409725950815,P58)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10) s(P46,P10) s(P47,P10)
s(P7,P11) s(P6,P11) s(P9,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P17,P18) s(P26,P18)
s(P18,P19) s(P17,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P34,P23) s(P35,P23)
s(P6,P24) s(P12,P24)
s(P11,P25) s(P24,P25)
s(P24,P26) s(P16,P26)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P28,P30) s(P29,P30)
s(P28,P31) s(P30,P31)
s(P29,P32) s(P30,P32)
s(P27,P33)
s(P27,P34) s(P33,P34)
s(P33,P35) s(P34,P35) s(P36,P35)
s(P32,P36) s(P33,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P42,P43) s(P50,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P32,P48) s(P37,P48)
s(P36,P49) s(P48,P49)
s(P41,P50) s(P48,P50)
s(P22,P51) s(P26,P51)
s(P47,P52) s(P50,P52)
s(P51,P53) s(P49,P53)
s(P52,P54) s(P25,P54)
s(P51,P55) s(P53,P55) s(P56,P55) s(P58,P55)
s(P53,P56) s(P49,P56) s(P57,P56)
s(P52,P57) s(P54,P57) s(P58,P57)
s(P54,P58) s(P25,P58)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12)
pen(2)
color(red) s(P35,P36) abstand(P35,P36,A0) print(abs(P35,P36):,7.17,16.334) print(A0,8.11,16.334)
color(red) s(P18,P26) abstand(P18,P26,A1) print(abs(P18,P26):,7.17,16.117) print(A1,8.11,16.117)
color(red) s(P55,P56) abstand(P55,P56,A2) print(abs(P55,P56):,7.17,15.901) print(A2,8.11,15.901)
color(red) s(P55,P58) abstand(P55,P58,A3) print(abs(P55,P58):,7.17,15.684) print(A3,8.11,15.684)
color(red) s(P56,P57) abstand(P56,P57,A4) print(abs(P56,P57):,7.17,15.467) print(A4,8.11,15.467)
print(min=0.9049703660424712,7.17,15.251)
print(max=1.0000000000278781,7.17,15.034)
\geooff
\geoprint()
Fast 112er.
\geo
ebene(481.65,524.85)
x(7.74,14.7)
y(8.47,16.05)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[206.37550833773253,-67.24795296646646];
#P[2]=[253.38328067979302,-16.399957762162632]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15);
#M(18,17,16,orange_angle);
#N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12);
#N(25,11,24); N(26,16,18);
#A(10,23,ab(10,23,[1,26],"gespiegelt"));
#R(9,11); R(24,26); A(9,11); A(24,26); A(48,50); A(35,36);
#N(51,50,47); N(52,22,26); N(53,51,49); N(54,25,52); N(55,52,51);
#R(53,55); A(53,55); A(54,55); N(56,53,49); N(57,25,54);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(12.98024907432574,9.028878711466898,P1)
p(13.659083840800434,9.763169770805938,P2)
p(12.683751746403694,9.98391239387558,P3)
p(13.362586512878387,10.718203453214619,P4)
p(14.337918607275128,10.497460830144975,P5)
p(12.387254418481646,10.93894607628426,P6)
p(12.258460219014454,9.72099203191986,P7)
p(12.019966928860233,8.749847886825314,P8)
p(11.298178073548947,9.441961207278274,P9)
p(11.059684783394728,8.470817062183729,P10)
p(11.536671363703167,10.413105352372819,P11)
p(13.38459519397866,10.799411934896671,P12)
p(14.12275422804264,11.474038676458058,P13)
p(13.169430814746171,11.775989781209754,P14)
p(13.90758984881015,12.450616522771139,P15)
p(12.95426643551368,12.752567627522836,P16)
p(13.692425469577662,13.427194369084221,P17)
p(12.861696130689174,12.870517833284575,P18)
p(12.794964778440207,13.868288812330881,P19)
p(11.964235439551718,13.311612276531235,P20)
p(11.897504087302751,14.309383255577544,P21)
p(11.066774748414263,13.752706719777896,P22)
p(11.000043396165296,14.750477698824202,P23)
p(13.005634956264476,11.724824890409836,P24)
p(12.155051901485995,11.198984166498393,P25)
p(12.123537096625192,12.195891091723192,P26)
p(9.128867464167266,8.992300024293979,P27)
p(8.436208479906004,9.713565253957903,P28)
p(9.407171983792011,9.95279291565572,P29)
p(8.714512999530749,10.674058145319645,P30)
p(7.743549495644741,10.43483048362183,P31)
p(9.685476503416757,10.913285807017463,P32)
p(9.83738054038825,9.69799770802539,P33)
p(10.094276123780997,8.731558543238854,P34)
p(10.802789200001978,9.437256226970266,P35)
p(10.54589361660923,10.403695391756804,P36)
p(8.69096586458603,10.7548339583875,P37)
p(7.940126541669022,11.415318864469032,P38)
p(8.887542910610309,11.735322339234703,P39)
p(8.136703587693301,12.395807245316234,P40)
p(9.084119956634591,12.715810720081905,P41)
p(8.333280633717584,13.376295626163436,P42)
p(9.174433288908658,12.835497872224868,P43)
p(9.222201554533484,13.834356317050359,P44)
p(10.063354209724562,13.293558563111791,P45)
p(10.111122475349386,14.292417007937281,P46)
p(10.952275130540443,13.751619253998712,P47)
p(9.0522810163544,11.687277715995755,P48)
p(9.91269812954687,11.177687300735094,P49)
p(9.92527261182567,12.17501296614334,P50)
p(10.15475604875224,13.14832553267907,P51)
p(11.875608555502561,13.16466941440429,P52)
p(10.153237490934922,12.148326685688657,P53)
p(11.896120203055409,12.164879800378085,P54)
p(11.020021175092438,12.64701099953697,P55)
p(10.873566175524383,11.454693795639736,P56)
p(11.189095895926416,11.4576905547523,P57)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9) s(P11,P9)
s(P8,P10) s(P9,P10) s(P34,P10) s(P35,P10)
s(P7,P11) s(P6,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P17,P18)
s(P18,P19) s(P17,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P46,P23) s(P47,P23)
s(P6,P24) s(P12,P24) s(P26,P24)
s(P11,P25) s(P24,P25)
s(P16,P26) s(P18,P26)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P28,P30) s(P29,P30)
s(P28,P31) s(P30,P31)
s(P29,P32) s(P30,P32)
s(P27,P33)
s(P27,P34) s(P33,P34)
s(P33,P35) s(P34,P35) s(P36,P35)
s(P32,P36) s(P33,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P32,P48) s(P37,P48) s(P50,P48)
s(P36,P49) s(P48,P49)
s(P41,P50) s(P43,P50)
s(P50,P51) s(P47,P51)
s(P22,P52) s(P26,P52)
s(P51,P53) s(P49,P53) s(P55,P53)
s(P25,P54) s(P52,P54) s(P55,P54)
s(P52,P55) s(P51,P55)
s(P53,P56) s(P49,P56)
s(P25,P57) s(P54,P57)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12)
pen(2)
color(red) s(P9,P11) abstand(P9,P11,A0) print(abs(P9,P11):,7.74,16.05) print(A0,8.68,16.05)
color(red) s(P24,P26) abstand(P24,P26,A1) print(abs(P24,P26):,7.74,15.834) print(A1,8.68,15.834)
color(red) s(P53,P55) abstand(P53,P55,A2) print(abs(P53,P55):,7.74,15.617) print(A2,8.68,15.617)
print(min=0.9999999999999789,7.74,15.4)
print(max=1.000000000000023,7.74,15.184)
\geooff
\geoprint()
Fast 4/6 mit 109.
\geo
ebene(474.91,551.62)
x(7.83,14.69)
y(8.59,16.55)
form(.)
#//Eingabe war:
#
#4/4 fast mit 124
#
#
#
#
#
#P[1]=[207.52657734675938,-56.879551665149286];
#P[2]=[253.6397702985784,-5.218902108177764]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15);
#M(18,17,16,orange_angle);
#N(19,18,17); N(20,18,19); N(21,20,19); N(22,20,21); N(23,22,21); N(24,6,12);
#N(25,16,18);
#A(10,23,ab(10,23,[1,25],"gespiegelt"));
#R(24,25); R(9,11); A(24,25); A(9,11); A(34,35); A(47,48);
#N(49,22,46); N(50,48,47); N(51,24,25); N(52,50,35); N(53,50,52); N(54,53,52);
#R(52,11); A(52,11); A(51,52); A(51,54); A(49,53); A(49,54); R(49,53);
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(12.996871552333268,9.178607807857155,P1)
p(13.662787782974167,9.924634331359513,P2)
p(12.683751746403686,10.128321442135732,P3)
p(13.349667977044588,10.87434796563809,P4)
p(14.32870401361507,10.670660854861872,P5)
p(12.370631940474107,11.07803507641431,P6)
p(12.263113585991503,9.85801876363429,P7)
p(12.04160542184992,8.88286024666455,P8)
p(11.307847455508158,9.562271202441682,P9)
p(11.086339291366576,8.58711268547194,P10)
p(11.529355619649738,10.537429719411424,P11)
p(13.377469073231174,10.979128175971981,P12)
p(14.120227079741808,11.648688138756755,P13)
p(13.168992139357913,11.957155459866867,P14)
p(13.911750145868547,12.62671542265164,P15)
p(12.960515205484652,12.93518274376175,P16)
p(13.703273211995286,13.604742706546524,P17)
p(12.850525185128854,13.082420198247863,P18)
p(12.82455463740702,14.08208290669058,P19)
p(11.971806610540588,13.55976039839192,P20)
p(11.945836062818756,14.559423106834634,P21)
p(11.093088035952322,14.037100598535973,P22)
p(11.06711748823049,15.036763306978692,P23)
p(12.958384874663842,11.887075550279093,P24)
p(12.107767178618218,12.41286023546309,P25)
p(9.172315351300503,9.167209536742437,P26)
p(8.501964244791406,9.909253601473118,P27)
p(9.479768808830189,10.118772656799663,P28)
p(8.809417702321092,10.860816721530345,P29)
p(7.831613138282309,10.651297666203797,P30)
p(9.787222266359873,11.07033577685689,P31)
p(9.902010641244827,9.850982001699215,P32)
p(10.12932732133354,8.877161111107188,P33)
p(10.859022611277863,9.560933576063967,P34)
p(10.63170593118915,10.534754466655992,P35)
p(8.78099255556426,10.965429361582313,P36)
p(8.034256818591617,11.630550207089295,P37)
p(8.983636235873568,11.94468190246781,P38)
p(8.236900498900924,12.60980274797479,P39)
p(9.186279916182876,12.923934443353303,P40)
p(8.439544179210229,13.589055288860285,P41)
p(9.295390371031264,13.071824879907526,P42)
p(9.315401948883652,14.071624628233087,P43)
p(10.171248140704678,13.554394219280326,P44)
p(10.191259718557074,14.554193967605887,P45)
p(11.047105910378269,14.036963558653127,P46)
p(9.194657471959278,11.875858566377447,P47)
p(10.042126108003906,12.406704034400544,P48)
p(11.073076458100038,13.037300850210409,P49)
p(10.078117450773435,11.4073519326638,P50)
p(12.077733132350886,11.413311359186991,P51)
p(11.077867547841436,11.429706874232071,P52)
p(10.558632552009197,12.284338384944785,P53)
p(11.558382649077199,12.306693326513054,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9) s(P11,P9)
s(P8,P10) s(P9,P10) s(P33,P10) s(P34,P10)
s(P7,P11) s(P6,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P17,P18)
s(P18,P19) s(P17,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P21,P22)
s(P22,P23) s(P21,P23) s(P45,P23) s(P46,P23)
s(P6,P24) s(P12,P24) s(P25,P24)
s(P16,P25) s(P18,P25)
s(P26,P27)
s(P26,P28) s(P27,P28)
s(P27,P29) s(P28,P29)
s(P27,P30) s(P29,P30)
s(P28,P31) s(P29,P31)
s(P26,P32)
s(P26,P33) s(P32,P33)
s(P32,P34) s(P33,P34) s(P35,P34)
s(P31,P35) s(P32,P35)
s(P30,P36)
s(P30,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P31,P47) s(P36,P47) s(P48,P47)
s(P40,P48) s(P42,P48)
s(P22,P49) s(P46,P49) s(P53,P49) s(P54,P49)
s(P48,P50) s(P47,P50)
s(P24,P51) s(P25,P51) s(P52,P51) s(P54,P51)
s(P50,P52) s(P35,P52) s(P11,P52)
s(P50,P53) s(P52,P53)
s(P53,P54) s(P52,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P16,P17,MA12) m(P17,P18,MB12) b(P17,MA12,MB12)
pen(2)
color(red) s(P24,P25) abstand(P24,P25,A0) print(abs(P24,P25):,7.83,16.553) print(A0,8.77,16.553)
color(red) s(P9,P11) abstand(P9,P11,A1) print(abs(P9,P11):,7.83,16.336) print(A1,8.77,16.336)
color(red) s(P52,P11) abstand(P52,P11,A2) print(abs(P52,P11):,7.83,16.12) print(A2,8.77,16.12)
color(red) s(P49,P53) abstand(P49,P53,A3) print(abs(P49,P53):,7.83,15.903) print(A3,8.77,15.903)
print(min=0.8771028746298477,7.83,15.687)
print(max=1.0333713098494652,7.83,15.47)
\geooff
\geoprint()
|
Profil
|
StefanVogel
Senior  Dabei seit: 26.11.2005 Mitteilungen: 4288
Wohnort: Raun
 | Beitrag No.1181, eingetragen 2018-05-05
|
Beim Versuch #1154 treffen im roten Kreis drei konvexe und ein konkaves Viereck zusammen. Konkave Vierecke mit Kantenlänge 1 sind aber nicht möglich. Deshalb müssen im nachfolgenden Teilgraph die beiden Winkel blau und grün so eingestellt werden, dass genau wie in P8 und P10 auch in P12 ein konvexes Viereck angefügt werden kann. Geometrisch lässt sich aber begründen, dass das nicht geht:
P7-P8 parallel P6-P10 parallel P11-P12 parallel P13-P24 parallel P17-P16,
P14-P16 parallel P19-P24 parallel P23-P12,
P7-P8 Ist gegenüber P9-P8 um 60° gedreht,
P14-P16 ist gegenüber P17-P16 um 120° gedreht,
also ist P23-P12 gegenüber P9-P8 um 180° gedreht und damit
P12-P23 parallel P9-P8, nur konvexe Vierecke entlang P9, P8, P10, P12, P23 sind nicht möglich.
\geo
ebene(342.74,391.9)
x(9.27,14.53)
y(10.53,16.54)
form(.)
#//Eingabe war:
#
##1154
#
#
#
#
#
#P[1]=[215.07,142.01]; P[2]=[242.74,201.07]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2);
#L(4,3,2); L(5,4,2); M(6,1,3,blauerWinkel,1); M(8,7,6,gruenerWinkel,1);
#N(10,8,6); N(11,6,3); N(12,10,11); N(13,11,4);
#A(12,13,ab(12,13,[1,13],"gespiegelt"));
#
#
#
#
#
#
#
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(13.297583249441823,12.177383164798593,P1)
p(13.721836415908813,13.082926786466116,P2)
p(12.72548605207628,12.997568995428754,P3)
p(13.149739218543267,13.903112617096276,P4)
p(14.1460895823758,13.988470408133638,P5)
p(12.298257032185173,12.214086182433606,P6)
p(12.766134395146029,11.330292782804033,P7)
p(11.773809794613934,11.453953153088214,P8)
p(12.16287907277249,10.532744655085086,P9)
p(11.30593243165308,12.337746552717785,P10)
p(11.72615983481963,13.034272013063768,P11)
p(10.733835234287536,13.157932383347948,P12)
p(12.15041300128662,13.939815634731293,P13)
p(11.270581204615851,15.849806157978104,P14)
p(12.262905805147945,15.726145787693927,P15)
p(11.65965048277441,14.92859765997498,P16)
p(12.651975083306503,14.804937289690802,P17)
p(13.255230405680038,15.602485417409751,P18)
p(10.769019122595965,14.984684503018597,P19)
p(10.270582833046937,15.851610835102587,P20)
p(9.846329666579951,14.946067213435065,P21)
p(9.274232469214406,15.766253044065227,P22)
p(10.344765956128978,14.079140881351076,P23)
p(11.158088400754524,14.06347600501547,P24)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8)
s(P7,P9) s(P8,P9)
s(P8,P10) s(P6,P10)
s(P6,P11) s(P3,P11)
s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12)
s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13)
s(P14,P15)
s(P14,P16) s(P15,P16)
s(P15,P17) s(P16,P17)
s(P15,P18) s(P17,P18)
s(P14,P19)
s(P14,P20) s(P19,P20)
s(P20,P21)
s(P20,P22) s(P21,P22)
s(P19,P23) s(P21,P23)
s(P16,P24) s(P19,P24)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P6,P7,MA11) m(P7,P8,MB11) b(P7,MA11,MB11)
pen(2)
print(min=0.9999999999999973,9.27,16.542)
print(max=1.000000000000001,9.27,16.312)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1182, vom Themenstarter, eingetragen 2018-05-10
|
Ich habe den fast 116er aus #1180 noch genauer hinbekommen. Der blaue Winkel ist ja eigentlich überflüssig. Vielleicht geht es noch genauer.
\geo
ebene(441.65,541.82)
x(7.19,13.56)
y(8.62,16.44)
form(.)
#//Eingabe war:
#
#4/4 fast mit 116
#
#
#
#
#
#P[1]=[-56.87170869683338,338.08044646947377];
#P[2]=[-115.43815960250187,301.13156143658307]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,7,6); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); N(18,6,12);
#N(19,18,16); N(20,11,18); R(9,11); A(9,11);
#M(21,10,9,orange_angle); N(22,10,21); N(23,22,21); N(24,22,23); N(25,24,23);
#N(26,24,25);
#A(17,26,ab(26,17,[1,27])); A(19,50); A(25,44);
#N(51,46,19); N(52,21,44); R(45,51); N(53,45,51); N(54,51,53); N(55,54,53);
#N(56,52,20); N(57,56,20); N(58,56,57);
#R(54,57); R(19,50); A(55,45); A(52,58); A(54,57); A(55,58);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(9.178721067416154,14.882187551002481,P1)
p(8.332968523889889,14.34861221881512,P2)
p(9.217934588159997,13.882956696899752,P3)
p(8.372182044633732,13.34938136471239,P4)
p(7.487215980363624,13.815036886627759,P5)
p(9.257148108903841,12.883725842797022,P6)
p(9.696783455186578,14.026844717760977,P7)
p(10.178500883833467,14.90317132293614,P8)
p(10.69656327160389,14.047828489694634,P9)
p(11.178280700250781,14.924155094869798,P10)
p(10.214845842957002,13.17150188451947,P11)
p(8.298613950448523,13.230542802703802,P12)
p(7.386728240366212,12.820098589993133,P13)
p(8.198126210451111,12.235604506069174,P14)
p(7.2862405003688,11.825160293358506,P15)
p(8.097638470453699,11.240666209434547,P16)
p(7.185752760371389,10.830221996723878,P17)
p(8.485154507628872,12.248095541764648,P18)
p(9.077132139971058,11.442141149254415,P19)
p(9.442852241682035,12.535871583487097,P20)
p(10.876518683489627,13.970771811378714,P21)
p(11.853053834916905,14.18612988071187,P22)
p(11.55129181815575,13.232746597220787,P23)
p(12.527826969583028,13.448104666553945,P24)
p(12.226064952821874,12.49472138306286,P25)
p(13.20260010424915,12.710079452396018,P26)
p(11.209631797204386,8.658113898117415,P27)
p(12.05538434073065,9.191689230304776,P28)
p(11.170418276460543,9.657344752220144,P29)
p(12.016170819986808,10.190920084407507,P30)
p(12.901136884256916,9.725264562492136,P31)
p(11.131204755716698,10.656575606322873,P32)
p(10.69156940943396,9.513456731358922,P33)
p(10.209851980787072,8.637130126183756,P34)
p(9.691789593016649,9.492472959425264,P35)
p(9.210072164369759,8.616146354250098,P36)
p(10.173507021663537,10.368799564600428,P37)
p(12.089738914172017,10.309758646416096,P38)
p(13.00162462425433,10.720202859126763,P39)
p(12.190226654169429,11.304696943050727,P40)
p(13.10211236425174,11.715141155761383,P41)
p(12.290714394166834,12.299635239685372,P42)
p(11.903198356991666,11.292205907355251,P43)
p(11.311220724649466,12.098160299865526,P44)
p(10.945500622938505,11.004429865632801,P45)
p(9.511834181130912,9.569529637741184,P46)
p(8.535299029703635,9.354171568408026,P47)
p(8.83706104646479,10.307554851899111,P48)
p(7.860525895037512,10.092196782565953,P49)
p(8.162287911798666,11.045580066057036,P50)
p(9.02578366326441,10.443460352432973,P51)
p(11.362569201356198,13.096841096686962,P52)
p(9.985642143101458,10.723945109032886,P53)
p(9.262805978593114,11.414964558309727,P54)
p(10.222664458430161,11.69544931490964,P55)
p(10.402710721519115,12.81635634008703,P56)
p(10.1656884061904,11.84485213421028,P57)
p(11.12554688602745,12.125336890810178,P58)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9) s(P11,P9)
s(P8,P10) s(P9,P10)
s(P7,P11) s(P6,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17) s(P49,P17) s(P50,P17)
s(P6,P18) s(P12,P18)
s(P18,P19) s(P16,P19) s(P50,P19)
s(P11,P20) s(P18,P20)
s(P10,P21)
s(P10,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25) s(P44,P25)
s(P24,P26) s(P25,P26) s(P41,P26) s(P42,P26)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P28,P30) s(P29,P30)
s(P28,P31) s(P30,P31)
s(P29,P32) s(P30,P32)
s(P27,P33)
s(P27,P34) s(P33,P34)
s(P33,P35) s(P34,P35) s(P37,P35)
s(P34,P36) s(P35,P36)
s(P32,P37) s(P33,P37)
s(P31,P38)
s(P31,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P32,P43) s(P38,P43)
s(P42,P44) s(P43,P44)
s(P37,P45) s(P43,P45)
s(P36,P46)
s(P36,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P46,P51) s(P19,P51)
s(P21,P52) s(P44,P52) s(P58,P52)
s(P45,P53) s(P51,P53)
s(P51,P54) s(P53,P54) s(P57,P54)
s(P54,P55) s(P53,P55) s(P45,P55) s(P58,P55)
s(P52,P56) s(P20,P56)
s(P56,P57) s(P20,P57)
s(P56,P58) s(P57,P58)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P9,P10,MA12) m(P10,P21,MB12) f(P10,MA12,MB12)
pen(2)
color(red) s(P9,P11) abstand(P9,P11,A0) print(abs(P9,P11):,7.19,16.44) print(A0,8.12,16.44)
color(red) s(P45,P51) abstand(P45,P51,A1) print(abs(P45,P51):,7.19,16.224) print(A1,8.12,16.224)
color(red) s(P54,P57) abstand(P54,P57,A2) print(abs(P54,P57):,7.19,16.007) print(A2,8.12,16.007)
color(red) s(P19,P50) abstand(P19,P50,A3) print(abs(P19,P50):,7.19,15.791) print(A3,8.12,15.791)
print(min=0.9970961109777784,7.19,15.574)
print(max=1.0000000029888099,7.19,15.357)
\geooff
\geoprint()
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1183, vom Themenstarter, eingetragen 2018-05-11
|
Fast 108er mit zwei leicht zu kurzen Kanten.
\geo
ebene(534.18,578.48)
x(7.12,14.13)
y(8.35,15.95)
form(.)
#//Eingabe war:
#
#4/4 fast mit 116
#
#
#
#
#
#P[1]=[-219.6325298060723,109.16140067847542];
#P[2]=[-190.7931797353783,38.65931906026753]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,9,7); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); N(18,6,12);
#N(19,18,16); N(20,6,18);
#M(21,10,9,orange_angle); N(22,10,21); N(23,22,21); N(24,22,23); N(25,24,23);
#N(26,24,25);
#A(17,26,ab(26,17,[1,27])); N(51,21,11); A(25,44); N(52,46,37);
#N(53,37,45); N(54,11,20); A(51,54); R(19,52); R(54,45); A(20,53);
#A(53,52); A(19,50); A(54,45); A(19,52); A(51,44); R(53,52); R(19,50);
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(7.1166432185213875,11.433081270793085,P1)
p(7.495248954535052,10.507523224716259,P2)
p(8.107502867107838,11.298184433161012,P3)
p(8.486108603121505,10.372626387084185,P4)
p(7.873854690548718,9.581965178639434,P5)
p(9.098362515694289,11.163287595528939,P6)
p(8.070539149740227,11.733218826597323,P7)
p(7.333664436174567,12.409248157697334,P8)
p(8.287560367393407,12.709385713501572,P9)
p(7.550685653827747,13.385415044601581,P10)
p(9.024435080959067,12.03335638240156,P11)
p(8.685005693654613,10.166801950876184,P12)
p(8.785913693925984,9.171906189762874,P13)
p(9.59706469703188,9.756742961999624,P14)
p(9.697972697303252,8.761847200886313,P15)
p(10.509123700409146,9.346683973123064,P16)
p(10.61003170068052,8.351788212009755,P17)
p(9.669465948446248,10.342409486977536,P18)
p(10.6694284677209,10.333751539998364,P19)
p(10.094815527486304,11.247438622204932,P20)
p(8.351524502392229,12.786535141257083,P21)
p(8.469750288222293,13.779521880123651,P22)
p(9.270589136786773,13.180641976779151,P23)
p(9.388814922616838,14.173628715645721,P24)
p(10.18965377118132,13.574748812301223,P25)
p(10.307879557011384,14.567735551167793,P26)
p(13.801268039170516,11.48644249238446,P27)
p(13.422662303156851,12.412000538461285,P28)
p(12.810408390584065,11.621339330016534,P29)
p(12.431802654570399,12.546897376093359,P30)
p(13.044056567143185,13.337558584538112,P31)
p(11.819548741997615,11.756236167648607,P32)
p(12.847372107951676,11.186304936580223,P33)
p(13.584246821517336,10.510275605480214,P34)
p(12.630350890298496,10.210138049675974,P35)
p(13.367225603864156,9.534108718575965,P36)
p(11.893476176732836,10.886167380775985,P37)
p(12.232905564037289,12.752721812301361,P38)
p(12.131997563765918,13.747617573414672,P39)
p(11.320846560660023,13.16278080117792,P40)
p(11.219938560388645,14.157676562291233,P41)
p(10.40878755728275,13.57283979005448,P42)
p(11.248445309245652,12.57711427620001,P43)
p(10.248482789971007,12.585772223179182,P44)
p(10.8230957302056,11.672085140972614,P45)
p(12.566386755299675,10.132988621920465,P46)
p(12.44816096946961,9.140001883053895,P47)
p(11.64732212090513,9.738881786398395,P48)
p(11.529096335075065,8.745895047531825,P49)
p(10.728257486510582,9.344774950876323,P50)
p(9.331632032249944,12.9850023423665,P51)
p(11.58627922544196,9.934521420811047,P52)
p(10.91572812434893,10.676384764576545,P53)
p(10.002183133342971,12.243138998601001,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P9,P11) s(P7,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17) s(P49,P17) s(P50,P17)
s(P6,P18) s(P12,P18)
s(P18,P19) s(P16,P19) s(P50,P19) s(P52,P19)
s(P6,P20) s(P18,P20) s(P53,P20)
s(P10,P21)
s(P10,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25) s(P44,P25)
s(P24,P26) s(P25,P26) s(P41,P26) s(P42,P26)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P28,P30) s(P29,P30)
s(P28,P31) s(P30,P31)
s(P29,P32) s(P30,P32)
s(P27,P33)
s(P27,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P33,P37) s(P35,P37)
s(P31,P38)
s(P31,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P32,P43) s(P38,P43)
s(P42,P44) s(P43,P44)
s(P32,P45) s(P43,P45)
s(P36,P46)
s(P36,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P21,P51) s(P11,P51) s(P54,P51) s(P44,P51)
s(P46,P52) s(P37,P52)
s(P37,P53) s(P45,P53) s(P52,P53)
s(P11,P54) s(P20,P54) s(P45,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P9,P10,MA12) m(P10,P21,MB12) f(P10,MA12,MB12)
pen(2)
color(red) s(P19,P52) abstand(P19,P52,A0) print(abs(P19,P52):,7.12,15.946) print(A0,7.97,15.946)
color(red) s(P54,P45) abstand(P54,P45,A1) print(abs(P54,P45):,7.12,15.749) print(A1,7.97,15.749)
color(red) s(P53,P52) abstand(P53,P52,A2) print(abs(P53,P52):,7.12,15.552) print(A2,7.97,15.552)
color(red) s(P19,P50) abstand(P19,P50,A3) print(abs(P19,P50):,7.12,15.355) print(A3,7.97,15.355)
print(min=0.9907247585900042,7.12,15.158)
print(max=1.0000000000000049,7.12,14.962)
\geooff
\geoprint()
|
Profil
|
StefanVogel
Senior  Dabei seit: 26.11.2005 Mitteilungen: 4288
Wohnort: Raun
 | Beitrag No.1184, eingetragen 2018-05-12
|
\quoteon(2018-04-22 07:10 - haribo in Beitrag No. 1156)
\quoteon(2018-04-16 03:54 - Slash in Beitrag No. 1136)
Einfach an den Rauten orientieren, z.B. der sehr schmalen.
\quoteoff
das ist leider nicht einfach slash, stefan hat jedenfals in #1153 die schmalste raute nicht an der gleichen position wie du in #1141 angeordnet... bei dir liegt sie ca auf 10uhr bei ihm kurz vor 9uhr... ihr habt also wohl mit hohem aufwand verschiedene graphen durchgespielt?
ich hab auch versucht deinen #1141 nachzuvollziehen und komme auf folgendes nachdem ich deinen linken kern in "normallage" gespiegegelt und gedreht habe
(damit du auch ne chance hast diese transaktion zurückzuverstehen hatte ich vorher NSWO (nord-süd-west-ost) draufgeschrieben)
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-_1141.PNG
also du benutzt den kern mit einer punktspiegelung zweimal, dadurch entsteht das grüne parallelogram, dies parallelogram erfordert zwei parallele linien im roten kern, die habe ich mit A und B bezeichnet,
den kern öffnest du rechts oben, verwendest aber gleichzeitig im hinterlegten bereich neue verbindungen...und da müsste dann nach dem parallelisieren auch noch die gelbe 1,2 passen...
ich denke das sind zu viele schritte auf einmal,
meine frage wäre also erstmal: ob man A und B parallelisieren kann wenn man oben an der angegebenen stelle öffnet...
\quoteoff
Parallelisieren geht nicht, weil Kante A (P65-P64 im nachfolgenden Graph) immer parallel zu der "benachbarten Rautenkante" von B parallel ist (P77-P79), die Raute müsste zusammenfallen, um zu B parallel zu sein. Beweis: Es gilt P65-P64 parallel P63-P62, um -60° gedreht ergibt P58-P62 parallel P57-P60 parallel P1-P59 parallel P70-P71, um 60° gedreht ergibt P70-P72 parallel P77-P79.
\geo
ebene(498.83,507.16)
x(5.01,14.98)
y(10.33,20.48)
form(.)
#//Eingabe war:
#
##1156 roter Kern
#
#
#
#
#
#
#
#
#P[1]=[0,200]; P[2]=[50,200]; D=ab(1,2); A(2,1);
#M(3,1,2,gruenerWinkel); N(4,3,2); L(5,3,4);
#M(6,1,3,blauerWinkel); N(7,6,3); N(8,7,5); L(9,8,5); L(10,8,9); L(11,10,9);
#L(12,6,7);
#Q(13,12,10,ab(11,5,8,9,10),D); L(17,16,13);
#N(18,6,14); N(19,1,18); L(20,19,18);
#Q(21,20,17,ab(11,5,[8,10]),ab(5,11,[8,10])); L(28,25,27);
#N(29,19,22); N(30,1,29); L(31,30,29);
#Q(32,31,24,ab(13,12,[14,17]),D);
#N(37,30,33); N(38,1,37); L(39,38,37);
#Q(40,39,36,ab(21,20,[22,24]),ab(21,17,[25,28]));
#N(48,38,41); N(49,1,48); L(50,49,48);
#Q(51,50,43,ab(13,12,[14,17]),D);
#N(56,49,52); N(57,1,56); L(58,57,56);
#
#M(59,1,57,orangerWinkel); N(60,59,57); L(61,59,60); N(62,60,58); L(63,62,58);
#L(64,62,63); L(65,64,63); N(66,65,55); L(67,66,55); L(68,66,67); L(69,68,67);
#M(70,1,59,vierterWinkel); N(71,70,59); L(72,70,71); N(73,71,61); L(74,73,61);
#L(75,73,74); M(76,1,70,fuenfterWinkel); N(77,76,70); L(78,76,77); N(79,77,72);
#L(80,79,72); L(81,79,80); N(82,2,76); L(83,2,82); N(84,82,78); L(85,84,78);
#L(86,84,85); L(87,86,85); N(88,4,83); L(89,88,83); L(90,88,89); L(91,90,89);
#L(92,90,91);
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#//Ende der Eingabe, weiter mit fedgeo:
p(10,14,P1)
p(11,14,P2)
p(10.844678258782334,14.535274358754876,P3)
p(11.844678258782334,14.535274358754876,P4)
p(11.344678258782334,15.401299762539313,P5)
p(10.29479775600703,14.955559670064208,P6)
p(11.139476014789365,15.490834028819084,P7)
p(11.639476014789368,16.35685943260352,P8)
p(12.319616085893331,15.62377725189068,P9)
p(12.614413841900365,16.579336921954884,P10)
p(13.294553913004327,15.846254741242046,P11)
p(10.25357569272205,15.954709679571554,P12)
p(11.82448994880005,17.192541816838517,P13)
p(10.110307218494562,16.944393540353637,P14)
p(11.03903282076105,16.573625748205036,P15)
p(10.895764346533563,17.563309608987115,P16)
p(11.681221474572562,18.182225677620597,P17)
p(10.151529281779553,15.945243530846291,P18)
p(9.85673152577252,14.989683860782083,P19)
p(9.176591454668555,15.722766041494923,P20)
p(9.757065806355602,17.636675529175438,P21)
p(8.492962924152623,16.452596180818198,P22)
p(9.466828630512078,16.67972078533518,P23)
p(8.783200099996147,17.40955092465845,P24)
p(10.001874579613903,18.606246911042582,P25)
p(10.719143640464083,17.909450603398017,P26)
p(10.963952413722383,18.87902198526516,P27)
p(10.246683352872205,19.575818292909727,P28)
p(9.173102995256617,15.719514000105383,P29)
p(9.316371469484096,14.7298301393233,P30)
p(8.38764586721761,15.100597931471906,P31)
p(7.858324495259353,17.029281131271247,P32)
p(7.4201712007888005,15.3535658539808,P33)
p(8.12298518123848,16.064939531371575,P34)
p(7.155510514809675,16.31790745388047,P35)
p(6.890849828830546,17.282249053780138,P36)
p(8.34889680305529,14.9827980618322,P37)
p(9.032525333571193,14.252967922508901,P38)
p(8.058659627211728,14.025843317991953,P39)
p(6.529691189803415,15.315128204046687,P40)
p(7.118140785840286,13.686101785315538,P41)
p(7.2941753989016505,14.670485749627616,P42)
p(6.35365656713613,14.330744228342905,P43)
p(5.768192535468597,15.963294694576906,P44)
p(6.710270509316981,16.298688628913414,P45)
p(5.948771854982163,16.946855119443633,P46)
p(5.0066938811337796,16.611461185107125,P47)
p(8.092006492199749,13.913226389832491,P48)
p(9.059481158628556,13.66025846732359,P49)
p(8.35666717817887,12.94888478993282,P50)
p(6.393615275270556,13.331542896456169,P51)
p(7.7002083818451545,12.194522908130663,P52)
p(7.375141226724713,13.140213843194495,P53)
p(6.718682430390999,12.38585196139234,P54)
p(5.737156478936842,12.577181014654014,P55)
p(8.40302236229484,12.905896585521436,P56)
p(9.343541203666284,13.245638118197846,P57)
p(9.167506580998992,12.261254142494064,P58,nolabel)
print(_P58,8.46,12.46)
p(9.917792833440846,13.003384737340273,P59)
p(9.261334037107128,12.249022855538119,P60)
p(10.242859988561287,12.057693802276443,P61,nolabel)
print(_P61,9.54,12.25)
p(9.085299414439836,11.264638879834337,P62)
p(8.26330886245679,11.834140005777568,P63)
p(8.181101695897633,10.837524743117843,P64)
p(7.359111143914589,11.407025869061075,P65)
p(6.548133811425716,11.992103441857545,P66)
p(5.635953103954996,11.582315256427076,P67)
p(6.4469304364438695,10.997237683630606,P68)
p(5.534749728973151,10.587449498200137,P69)
p(10.420010380043403,13.092480699568435,P70)
p(10.337803213484248,12.09586543690871,P71)
p(11.24200093202645,12.522979573625205,P72,nolabel)
print(_P72,10.54,12.72)
p(10.662870368604692,11.150174501844878,P73)
p(9.666930409984573,11.240194493089916,P74)
p(10.086940790027976,10.332675192658353,P75)
p(10.865156692559635,13.498498357610591,P76)
p(11.285167072603038,12.590979057179027,P77)
p(11.861096651179754,13.408478366365554,P78)
p(12.107157624586081,12.021477931235793,P79)
p(11.240266115957414,11.522981078419736,P80)
p(12.105422808517046,11.021479436030322,P81)
p(11.865156692559633,13.498498357610591,P82)
p(11.866891508628663,14.498496852816064,P83)
p(12.861096651179754,13.408478366365555,P84)
p(12.361096651179755,12.542452962581116,P85)
p(13.361096651179755,12.54245296258112,P86)
p(12.861096651179757,11.676427558796679,P87)
p(12.711569767410996,15.033771211570942,P88)
p(12.75279183069598,14.034621202063597,P89)
p(13.597470089478312,14.569895560818477,P90)
p(13.638692152763296,13.570745551311132,P91)
p(14.483370411545629,14.10601991006601,P92)
nolabel()
s(P1,P2)
s(P1,P3)
s(P3,P4) s(P2,P4)
s(P3,P5) s(P4,P5)
s(P1,P6)
s(P6,P7) s(P3,P7)
s(P7,P8) s(P5,P8)
s(P8,P9) s(P5,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P6,P12) s(P7,P12)
s(P15,P13) s(P16,P13) s(P10,P13)
s(P12,P14)
s(P12,P15) s(P14,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P13,P17) s(P26,P17) s(P27,P17)
s(P6,P18) s(P14,P18)
s(P1,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P23,P21) s(P24,P21)
s(P20,P22)
s(P20,P23) s(P22,P23)
s(P22,P24) s(P23,P24)
s(P21,P25)
s(P21,P26) s(P25,P26)
s(P25,P27) s(P26,P27)
s(P25,P28) s(P27,P28)
s(P19,P29) s(P22,P29)
s(P1,P30) s(P29,P30)
s(P30,P31) s(P29,P31)
s(P34,P32) s(P35,P32) s(P24,P32)
s(P31,P33)
s(P31,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P32,P36) s(P35,P36) s(P45,P36) s(P46,P36)
s(P30,P37) s(P33,P37)
s(P1,P38) s(P37,P38)
s(P38,P39) s(P37,P39)
s(P42,P40) s(P43,P40)
s(P39,P41)
s(P39,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P40,P44)
s(P40,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P44,P47) s(P46,P47)
s(P38,P48) s(P41,P48)
s(P1,P49) s(P48,P49)
s(P49,P50) s(P48,P50)
s(P53,P51) s(P54,P51) s(P43,P51)
s(P50,P52)
s(P50,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P51,P55) s(P54,P55)
s(P49,P56) s(P52,P56)
s(P1,P57) s(P56,P57)
s(P57,P58) s(P56,P58)
s(P1,P59)
s(P59,P60) s(P57,P60)
s(P59,P61) s(P60,P61)
s(P60,P62) s(P58,P62)
s(P62,P63) s(P58,P63)
s(P62,P64) s(P63,P64)
s(P64,P65) s(P63,P65)
s(P65,P66) s(P55,P66)
s(P66,P67) s(P55,P67)
s(P66,P68) s(P67,P68)
s(P68,P69) s(P67,P69)
s(P1,P70)
s(P70,P71) s(P59,P71)
s(P70,P72) s(P71,P72)
s(P71,P73) s(P61,P73)
s(P73,P74) s(P61,P74)
s(P73,P75) s(P74,P75)
s(P1,P76)
s(P76,P77) s(P70,P77)
s(P76,P78) s(P77,P78)
s(P77,P79) s(P72,P79)
s(P79,P80) s(P72,P80)
s(P79,P81) s(P80,P81)
s(P2,P82) s(P76,P82)
s(P2,P83) s(P82,P83)
s(P82,P84) s(P78,P84)
s(P84,P85) s(P78,P85)
s(P84,P86) s(P85,P86)
s(P86,P87) s(P85,P87)
s(P4,P88) s(P83,P88)
s(P88,P89) s(P83,P89)
s(P88,P90) s(P89,P90)
s(P90,P91) s(P89,P91)
s(P90,P92) s(P91,P92)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P2,P1,MA11) m(P1,P3,MB11) b(P1,MA11,MB11)
color(#FFA500) m(P57,P1,MA12) m(P1,P59,MB12) b(P1,MA12,MB12)
color(#EE82EE) m(P59,P1,MA13) m(P1,P70,MB13) f(P1,MA13,MB13)
color(#00FFFF) m(P70,P1,MA14) m(P1,P76,MB14) b(P1,MA14,MB14)
pen(2)
print(min=0.9999999870952145,5.01,20.476)
print(max=1.0000000000000886,5.01,20.176)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
Den Graph habe ich von P1 bis P57 unverändert aus #803-2 übernommen, danach ergeben sich noch drei veränderliche Winkel, weil mehrere Randdreiecke geöffnet sind. Die Parallelität gilt aber für beliebige Winkeleinstellungen und gilt auch in anderen Speichen, zum Beispiel P74-P73 parallel P82-P84.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1185, eingetragen 2018-05-12
|
http://mathworld.wolfram.com/deGreyGraph.html
kein streichholzgraph, aber wer versteht den aufbau dieses 5-farb-knoten-beweis-einheitslängen-graphes mit 1581 knoten?
https://arxiv.org/pdf/1804.02385.pdf
haribo
[Die Antwort wurde nach Beitrag No.1183 begonnen.]
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1186, vom Themenstarter, eingetragen 2018-05-12
|
\quoteon(2018-05-12 06:42 - haribo in Beitrag No. 1185)
http://mathworld.wolfram.com/deGreyGraph.html
kein streichholzgraph, aber wer versteht den aufbau dieses 5-farb-knoten-beweis-einheitslängen-graphes mit 1581 knoten?
https://arxiv.org/pdf/1804.02385.pdf
\quoteoff
Da muss man wohl oder übel das Paper durcharbeiten. Könnte aber eine interessante Aufgabe für uns sein einen kleineren Graphen zu finden oder sogar einen der 6 Farben benötigt.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1187, eingetragen 2018-05-13
|
\quoteon(2018-05-12 23:25 - Slash in
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1188, eingetragen 2018-05-13
|
\quoteon(2018-05-13 08:11 - haribo in Beitrag No. 1187)
was wir aber mal machen sollten ist: alle unsere 4/n´s auf ihre cromatierungs eigenschaften untersuchen, wäre ja blöd wenn wir da versehentlich einen 5-coloristen schon hätten...
haribo
\quoteoff
also harborth; 4/6 (somit auch 4/5); und 4/8 sind minimal dreifärbbar
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb1.png
bei letzterem lernt man das ein kite drei verschiedene eckfarben hat, daraus folgt zwingend dass ein doppelkite in dreifärbung gleichfarbige flügelspitzen hat
und daraus ergibt sich dass der 4/10er minimal vierfärbbar ist!
dat is immerhin ein ergebnis auf die schnelle...
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb2.PNG
haribo
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1189, vom Themenstarter, eingetragen 2018-05-13
|
\quoteon(2018-05-13 08:11 - haribo in Beitrag No. 1187)
\quoteon(2018-05-12 23:25 - Slash in
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1190, vom Themenstarter, eingetragen 2018-05-13
|
Wohl noch besser geeignet sind die minimalen n-reguläre Einheitsdistanz-Graphen, siehe hier. Die kann man so gut überlagern, da wird eine Moser-Spindel neidisch. Ich kann mir aber nicht vorstellen, dass mit diesen Graphen bisher keine Versuche unternommen worden sind. Ist eben ein neues Gebiet für uns.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1191, eingetragen 2018-05-13
|
auch ohne echten beweis, aber mit drei beispielen (harborth; 114er;120er), scheint ein 4/4er immer mit drei farben auszukommen!
die überlagerung vom 114er und 120er kommt dann immer noch mit drei farben aus... (evtl liegen knoten unzulässig auf hölzern?) ganz so einfach ist es also nicht
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb3.PNG
[Die Antwort wurde nach Beitrag No.1189 begonnen.]
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1192, vom Themenstarter, eingetragen 2018-05-13
|
Das sind jetzt natürlich alles nur Mutmaßungen, aber ich glaube man braucht zwingend 6er Knoten für eine 5-färbbarkeit, so das die SHG nicht wirklich weiterhelfen. Aber der mimimale 5-reguläre Einheitsdistanz-Graph (5-EDG) ist hoch flexibel, und das ist eine Moserspindel nicht. Man könnte versuchen einige dieser Graphen so zu kombinieren, das auch außen viele zusätzliche 5er und 6er Knoten möglich sind. Ich habe de Greys Paper nur überflogen, doch ich denke sein Beweis ist mit der Konstruktion des Harborthgraphen vergleichbar, in dem Sinne, dass er auf Symmetrie aufbaut. Sein Graph wird deshalb so groß, da er nicht felxibel ist und erst in dieser Größe entsprechende Knotenüberlagerungen möglich sind. Das sieht man in Fig.4 sehr gut.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1193, eingetragen 2018-05-14
|
klein+beweglich+mindestens vierfarbig wäre diese erweiterte moserspindel
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-vierfarb1.png
aber was genau macht de grey dann damit? wie zwingt er diesen vierfarbling zu einem fünf-coloristen?
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1194, eingetragen 2018-05-14
|
derart zusammengeklappt wirds ein 3-4-5er zwar wieder starr aber immer noch ein vierfarbling, und mit 15 hölzern somit vermutlich der kleinste streichholz-vierfarbling?
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-vierfarb2.png
guten morgen slash, by this way
|
Profil
|
StefanVogel
Senior  Dabei seit: 26.11.2005 Mitteilungen: 4288
Wohnort: Raun
 | Beitrag No.1195, eingetragen 2018-05-14
|
\quoteon(2018-05-13 19:47 - Slash in Beitrag No. 1189)
...Hier mal ein paar Beispiele.
http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4-reg_berlagerung.png
Bei mehreren (4;6), (4;7) und (4;8) sehe ich das meiste Potenzial, da sie sich mit vielen Knoten überlagern lassen und nicht zu groß und sehr symmetrisch sind.
Inwieweit Stefan hierbei mit seinem Programm helfen kann, kann ich nicht beurteilen. Wahrscheinlich geht es wohl gar nicht oder nur mit vielen mühseligen Änderungen, da ja Überschneidungen erlaubt sind.
\quoteoff
Bei diesen acos(1/4)-Graphen (das waren die Graphen, wo sich die Punktkoordinaten aus einfachen, nicht ineinandergeschachtelten Wurzelausdrücken darstellen lassen) wäre es mit dem Streichholzprogramm möglich, das Zusammenfallen der Knotenpunkte exakt zu beweisen, falls es erforderlich wäre. Bei diesen Graphen liegen die Knotenpunkte auch in einem gewissen "Raster", so dass man schon vorher beim näherungsweisen Übereinanderlegen davon ausgehen kann, dass sehr nahe beieinanderliegende Knoten zusammenfallen.
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1196, eingetragen 2018-05-14
|
also als einfache verschiebung hab ich hierfür wieder ne dreifarb-variante gefunden
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-dreifarb4.PNG
das überprüfen kann einen direkt in eine wahnsinnigkeit treiben, aber ich finde grad keinen fehler mehr...
dafür könnte ich aber etliche weitere linien einfügen (grüne doppellinien) die derzeit zumindest zu einer vierfarbigkeit führen würden...
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1197, vom Themenstarter, eingetragen 2018-05-15
|
Ich habe es bis jetzt nicht geschafft diesen Graphen mit nur 4 Farben zu färben. Das muss aber wohl gehen.
http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_7-regmit54.png
Es könnte aber sein, dass er die 4 Farben zwingend an den äußeren 11 Knoten benötigt. Das könnte interessant sein, wenn man mehrere davon verbindet. Am besten eine ungerade Anzahl. Der Graph ist flexibel. Mit der hier gezeigten Symmetrie lassen sich 6 Kopien als Ring anordnen.
Das ein paar Kanten nahe beieinanderliegen, muss man in Kauf nehmen. Das ist hier schon die günstigste Anordnung.
EDIT: Kommt mit nur 4 Farben aus und auch 3 für die äußeren 11 Knoten.
http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4farb_7er_54.png
|
Profil
|
Slash
Aktiv  Dabei seit: 23.03.2005 Mitteilungen: 9140
Wohnort: Cuxhaven
 | Beitrag No.1198, vom Themenstarter, eingetragen 2018-05-15
|
Der Slash Monster Graph
http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_slash_monster_graph_3.png
Ein EDG mit 355 Knoten der Grade 3;5;7;8;12;13;15. (wenn ich mich nicht verzählt habe ;-) )
Die Winkel sind übrigens alle Vielfache von 10 Grad, also 30, 40, 50, etc.
Die Komplexität kann man natürlich durch Rotation noch auf die Höhe treiben und dann behaupten er bräuchte 7 Farben. :-P
|
Profil
|
haribo
Senior  Dabei seit: 25.10.2012 Mitteilungen: 4514
 | Beitrag No.1199, eingetragen 2018-05-15
|
deine edit, die hatte ich nicht gesehen... meine 4-farb lösung is wohl noch symetrischer zur west-ost-achse, schwarz und blau jeweils paarweise vertauscht; rot und grün gespiegelt
http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-vierfarb3.png
haribo
|
Profil
|
|