Matroids Matheplanet Forum Index
Moderiert von matroid
Kombinatorik & Graphentheorie » Graphentheorie » Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Thema eröffnet 2016-02-17 22:35 von Slash
Seite 24   [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62]   62 Seiten
Autor
Kein bestimmter Bereich Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.920, vom Themenstarter, eingetragen 2017-04-20

Mein erster MGC Gehversuch. Der 2/4 mit 60 aus #915 genau. :-) \geo ebene(364.87,297.88) x(8.19,15.49) y(10,15.96) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 31 vertices. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); L(12,10,8); N(13,12,3); L(14,12,13); #L(15,14,13); L(16,14,15); A(7,16,ab(7,16,[1,16],"gespiegelt"),Bew(2)); #N(31,30,15); A(6,31); R(6,31); A(22,31); R(22,31); W(); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(12.5,10.86602540378444,P6) p(13,10,P7) p(9.920501177982398,10.99683495990952,P8) p(9.096966190329113,10.429569480516578,P9) p(9.017467368311511,11.426404440426099,P10) p(8.193932380658225,10.859138961033159,P11) p(9.841002355964797,11.99366991981904,P12) p(10.824354705831652,11.811960932668338,P13) p(10.490043129866672,12.75442354209951,P14) p(11.473395479733528,12.572714554948806,P15) p(11.139083903768547,13.515177164379978,P16) p(14.686552697345451,12.48103607371533,P17) p(14.124368464896968,11.654024049143553,P18) p(13.68924715860685,12.554395888336884,P19) p(13.127062926158366,11.727383863765109,P20) p(13.562184232448484,10.827012024571777,P21) p(12.564878693709884,10.900371839193333,P22) p(13.906851183223278,13.107187452277726,P23) p(14.838964940734048,13.469353081595521,P24) p(14.059263426611874,14.095504460157919,P25) p(14.991377184122644,14.457670089475712,P26) p(13.127149669101104,13.733338830840124,P27) p(12.724600000411183,12.817940685639012,P28) p(12.133116786434826,13.62425799761005,P29) p(11.7305671177449,12.708859852408938,P30) p(12.064878693709883,11.766397242977769,P31) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P31,P6) s(P6,P7) s(P5,P7) s(P21,P7) s(P22,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P10,P12) s(P8,P12) s(P12,P13) s(P3,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P14,P16) s(P15,P16) s(P29,P16) s(P30,P16) s(P17,P18) s(P17,P19) s(P18,P19) s(P18,P20) s(P19,P20) s(P18,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P31,P22) s(P17,P23) s(P17,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P24,P26) s(P25,P26) s(P23,P27) s(P25,P27) s(P19,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P30,P31) s(P15,P31) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P6,P31) abstand(P6,P31,A0) print(abs(P6,P31):,8.19,15.958) print(A0,9.49,15.958) color(red) s(P22,P31) abstand(P22,P31,A1) print(abs(P22,P31):,8.19,15.658) print(A1,9.49,15.658) print(min=0.9999999999999978,8.19,15.358) print(max=1.0000000000000029,8.19,15.058) \geooff \geoprint() Der blaue Winkel beträgt 34.559758599943976 Grad. Der Graph ist starr.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.921, vom Themenstarter, eingetragen 2017-04-21

Und wieder gezaubert. :-) Ein (neuer) 2/4 mit 22 Kanten und vier 2er-Knoten, der flexibel ist und gespiegelt an der Geraden durch P5,P13 diese beiden Varianten erlaubt, so dass der Abstand P12,P24 genau 2 wird und ein großes Dreieck reinpasst. Die Abstände der 2er-Knoten P9,P28 und P21,P28 sind dabei gleich, also bei beiden Graphen. Diese Graphen mit 53 Kanten sind dann starr. \geo ebene(348.8,293.77) x(8.84,15.81) y(8.5,14.38) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 53 edges. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(5,13,ab(5,13,[1,13],"gespiegelt"),Bew(2)); A(12,24); H(25,12,24,2); #L(26,12,25); L(27,25,24); L(28,26,27); A(26,27); R(12,25); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(10.413503115695294,10.910502703626015,P6) p(9.418233086293103,10.813355554549148,P7) p(9.831736201988397,11.723858258175165,P8) p(8.836466172586206,11.626711109098297,P9) p(10.827006231390587,11.821005407252033,P10) p(11.480237966721402,11.063847365653917,P11) p(11.809340197759637,12.008141663807654,P12) p(12.480237966721402,11.063847365653919,P13) p(13.322875655532295,8.5,P14) p(12.661437827766147,9.25,P15) p(13.64167579448755,9.44782196186948,P16) p(12.980237966721402,10.19782196186948,P17) p(13.732246080631777,9.412368267233065,P18) p(14.317694965112661,8.601658945922345,P19) p(14.727065390212143,9.514027213155412,P20) p(15.31251427469303,8.70331789184469,P21) p(14.14161650573126,10.324736534466131,P22) p(13.14167579448755,10.313847365653917,P23) p(13.632215853291932,11.18526600827536,P24) p(12.720778025525783,11.596703836041506,P25) p(12.621374722566081,12.591751062740169,P26) p(13.532812550332228,12.180313234974022,P27) p(13.433409247372525,13.175360461672685,P28) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P15,P5) s(P17,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P23,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P14,P18) s(P14,P19) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P18,P22) s(P20,P22) s(P16,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P12,P26) s(P25,P26) s(P27,P26) s(P25,P27) s(P24,P27) s(P26,P28) s(P27,P28) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) pen(2) color(red) s(P12,P25) abstand(P12,P25,A0) print(abs(P12,P25):,8.84,14.375) print(A0,10.14,14.375) print(min=0.9999999999999991,8.84,14.075) print(max=1.9999999999999991,8.84,13.775) \geooff \geoprint() \geo ebene(348.8,293.77) x(8.01,14.99) y(10,15.88) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 53 edges. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(5,13,ab(5,13,[1,13],"gespiegelt"),Bew(2)); A(12,24); H(25,12,24,2); #L(26,12,25); L(27,25,24); L(28,26,27); A(26,27); R(12,25); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.590629574900518,10.912368267233067,P6) p(9.005180690419634,10.101658945922347,P7) p(8.595810265320152,11.014027213155414,P8) p(8.010361380839267,10.203317891844694,P9) p(9.181259149801036,11.824736534466133,P10) p(10.181199861044746,11.813847365653919,P11) p(9.690659802240367,12.68526600827536,P12) p(11.181199861044746,11.813847365653919,P13) p(13.322875655532298,11.499999999999998,P14) p(12.661437827766148,10.749999999999998,P15) p(12.342637688810894,11.69782196186948,P16) p(11.681199861044746,10.94782196186948,P17) p(12.909372539837005,12.410502703626014,P18) p(13.904642569239195,12.313355554549146,P19) p(13.491139453543902,13.223858258175163,P20) p(14.486409482946092,13.126711109098293,P21) p(12.495869424141713,13.32100540725203,P22) p(11.842637688810894,12.563847365653917,P23) p(11.513535457772662,13.508141663807653,P24) p(10.602097630006513,13.096703836041506,P25) p(9.79006310520007,13.680313234974022,P26) p(10.70150093296622,14.091751062740169,P27) p(9.889466408159775,14.675360461672685,P28) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P15,P5) s(P17,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P23,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P14,P18) s(P14,P19) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P18,P22) s(P20,P22) s(P16,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P12,P26) s(P25,P26) s(P27,P26) s(P25,P27) s(P24,P27) s(P26,P28) s(P27,P28) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P12,P25) abstand(P12,P25,A0) print(abs(P12,P25):,8.01,15.875) print(A0,9.31,15.875) print(min=0.9999999999999991,8.01,15.575) print(max=1.9999999999999991,8.01,15.275) \geooff \geoprint() Damit können diese 4/4 Graphen konstruiert werden. Rechts die 2/4 ohne großes Dreieck gespiegelt und kombiniert. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_mit_212_-Slash_neu.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.922, vom Themenstarter, eingetragen 2017-04-21

Hier noch ein größerer 2/4 Vogel - ein Star(r) mit 109 Kanten(Federn). ;-) \geo ebene(482.18,394.61) x(8.9,18.54) y(8.4,16.29) form(.) #//Eingabe war: # #Fig.1c. 4-regular matchstick graph with 57 vertices. The #Winkler graph. This graph is rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(5,13,ab(5,13,[1,13],"gespiegelt"),Bew(2)); N(25,12,24,2); L(26,25,24); #A(21,26,ab(21,26,[1,26],"gespiegelt"),Bew(2)); L(51,12,25); L(52,50,38); #A(51,52); H(53,51,52,2); L(54,51,53); L(55,53,52); L(56,54,55); A(54,55); #R(51,53); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(10.447590175564315,10.894238801852339,P6) p(9.449361568328275,10.834743863449203,P7) p(9.89695174389259,11.72898266530154,P8) p(8.898723136656548,11.669487726898407,P9) p(10.89518035112863,11.788477603704676,P10) p(11.492701315914724,10.98662431497843,P11) p(11.888366151666705,11.905019294140097,P12) p(12.492701315914724,10.98662431497843,P13) p(13.201584757440203,8.401189795289207,P14) p(12.6007923787201,9.200594897644603,P15) p(13.593493694634825,9.321193808838595,P16) p(12.992701315914724,10.12059891119399,P17) p(13.647535052096107,9.296247522308148,P18) p(14.199702634220115,8.462514374801511,P19) p(14.645652928876018,9.357572101820452,P20) p(15.197820511000028,8.523838954313813,P21) p(14.093485346752008,10.191305249327089,P22) p(13.093493694634825,10.187219212623033,P23) p(13.589950909106907,11.055280405280913,P24) p(12.87732424910907,11.756823877533575,P25) p(13.841192047937938,12.023204932379429,P26) p(18.04236615005862,13.117851318760241,P27) p(17.303680986096452,12.443800706015036,P28) p(17.089278614003724,13.420546129777549,P29) p(16.350593450041558,12.746495517032344,P30) p(16.564995822134286,11.769750093269831,P31) p(17.108975715504936,13.476713822630007,P32) p(17.88645497759869,14.105622398668014,P33) p(16.953064543045,14.46448490253778,P34) p(17.73054380513875,15.093393478575786,P35) p(16.175585280951246,13.835576326499773,P36) p(16.274695109705082,12.840499826001249,P37) p(15.36337866718753,13.252206446784964,P38) p(15.536009945742913,12.166449213256044,P39) p(16.755081986718725,9.778803773040785,P40) p(16.660038904426507,10.774276933155308,P41) p(15.845455400127866,10.19423062937901,P42) p(15.750412317835647,11.189703789493532,P43) p(15.822350910852407,10.139376567512661,P44) p(15.976451248859377,9.1513213636773,P45) p(15.043720172993055,9.511894158149175,P46) p(14.889619834986087,10.499949361984536,P47) p(15.631053028035133,11.170976053141523,P48) p(14.679210270351248,11.477562687952517,P49) p(14.732741204196255,12.476128879610176,P50) p(12.511186195893552,12.68738442150025,P51) p(14.375957047211301,13.410315726726179,P52) p(13.443571621552426,13.048850074113215,P53) p(12.66434047096464,13.675586712545686,P54) p(13.596725896623516,14.03705236515865,P55) p(12.817494746035731,14.66378900359112,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P15,P5) s(P17,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P23,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P14,P18) s(P14,P19) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P45,P21) s(P46,P21) s(P18,P22) s(P20,P22) s(P16,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P12,P25) s(P24,P25) s(P25,P26) s(P24,P26) s(P49,P26) s(P50,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P41,P31) s(P43,P31) s(P27,P32) s(P27,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P34,P36) s(P29,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P30,P39) s(P37,P39) s(P43,P39) s(P48,P39) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P40,P44) s(P40,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P42,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P38,P50) s(P49,P50) s(P12,P51) s(P25,P51) s(P52,P51) s(P50,P52) s(P38,P52) s(P51,P54) s(P53,P54) s(P55,P54) s(P53,P55) s(P52,P55) s(P54,P56) s(P55,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) pen(2) color(red) s(P51,P53) abstand(P51,P53,A0) print(abs(P51,P53):,8.9,16.293) print(A0,10.2,16.293) print(min=0.9999999999999928,8.9,15.993) print(max=1.9999999999999982,8.9,15.693) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.923, eingetragen 2017-04-22

Toll das du endlich , mit dem Werkzeug, Erfolge erreichst Untersuch mal in welchem Bereich der als winkelgraph funktioniert dh welcher winkelbereich kann von den beiden geraden die durch p9-12 und p5-13 gehen eingeschlossen werden 45 dürfte dabei sein ---> 8x22=176 als achterring 60grad auch noch?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.924, vom Themenstarter, eingetragen 2017-04-22

Also ich bekomme keine Kreisgraphen hin, egal mit welchen Teilgraphen der letzten drei Graphen ich arbeite. Aber das sollte Stefan noch mal überprüfen. So firm bin ich ja noch nicht mit dem Programm.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.925, eingetragen 2017-04-22

45 grad hab ich mich wohl vertan aber 36 grad geht, das gibt nen zehnfachen mit dann 220 http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st220er.PNG nachtrag: den hatten wir übrigends auch schon im november16... http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?rd2&topic=216644&start=600#p1635739


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.926, vom Themenstarter, eingetragen 2017-04-22

Tatsächlich. Ich hatte die Teilgraphen aber auch anders aneinandergesetzt. Deshalb hat es nicht funktioniert. \geo ebene(502.39,553.02) x(8.03,18.08) y(5.18,16.24) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 53 edges. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(12,13,ab(12,13,[1,13],"gespiegelt"),Bew(2)); #A(22,18,ab(22,18,[1,24],"gespiegelt"),Bew(2)); #A(33,29,ab(33,29,[1,46],"gespiegelt"),Bew(2)); #A(5,9,ab(5,9,[1,24],"gespiegelt"),Bew(2)); R(110,55); R(106,51); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.363589760437414,10.771350767796267,P6) p(9.013785520078507,9.834527949208393,P7) p(8.37737528051592,10.60587871700466,P8) p(8.027571040157016,9.669055898416786,P9) p(8.727179520874827,11.542701535592535,P10) p(9.726246422082138,11.499512105033414,P11) p(9.264116115517666,12.386324136838704,P12) p(10.726246422082138,11.499512105033414,P13) p(11.720411316985277,12.836526158987624,P14) p(12.18254162354975,11.949714127182334,P15) p(11.183474722342439,11.992903557741455,P16) p(11.645605028906909,11.106091525936161,P17) p(12.644671930114221,11.062902095377044,P18) p(10.742263716251472,13.044437849805384,P19) p(11.411394322610331,13.787582675282776,P20) p(10.433246721876525,13.995494366100537,P21) p(11.102377328235383,14.738639191577931,P22) p(9.764116115517666,13.252349540623142,P23) p(10.264116115517666,12.386324136838704,P24) p(15.255970962774606,12.205341522356846,P25) p(14.555368719541363,11.491789494277215,P26) p(14.287715657919119,12.455304848905383,P27) p(13.587113414685877,11.74175282082575,P28) p(13.854766476308127,10.778237466197588,P29) p(15.151442499506949,13.199863417725119,P30) p(16.06498795714955,12.793126774649323,P31) p(15.960459493881896,13.787648670017596,P32) p(16.8740049515245,13.380912026941797,P33) p(15.046914036239297,14.194385313093395,P34) p(14.377783429880438,13.451240487616,P35) p(14.068766435505491,14.402297003911151,P36) p(13.6771811866472,12.73768845953637,P37) p(12.026637941364324,12.96501512796735,P38) p(12.335654935739278,12.013958611672198,P39) p(13.004785542098134,12.757103437149592,P40) p(13.313802536473084,11.806046920854435,P41) p(12.563574536007165,13.808637729213519,P42) p(11.564507634799854,13.85182715977264,P43) p(12.101444229442693,14.69544976101881,P44) p(13.100511130650004,14.652260330459688,P45) p(13.36816419227225,13.688744975831522,P46) p(12.516897857341707,7.0802669823987365,P47) p(12.664281619566005,8.069346365781394,P48) p(13.447157610822678,7.4471685918984925,P49) p(13.594541373046992,8.436247975281141,P50) p(12.81166538179032,9.058425749164051,P51) p(13.186028463700556,6.3371221569213505,P52) p(12.20788086296676,6.129210466103585,P53) p(12.877011469325609,5.386065640626197,P54) p(11.898863868591805,5.178153949808433,P55) p(13.855159070059422,5.593977331443954,P56) p(13.959687533327072,6.588499226812232,P57) p(14.768704527702024,6.000713974519759,P58) p(14.107071295551384,7.577578610194881,P59) p(15.576008094092515,8.36383245000781,P60) p(14.766991099717567,8.951617702300283,P61) p(14.662462636449915,7.95709580693201,P62) p(13.853445642074957,8.544881059224478,P63) p(13.957974105342618,9.539402954592752,P64) p(15.637486187637755,7.36572401701366,P65) p(16.471134399569547,7.9180198242971525,P66) p(16.532612493114797,6.9199113913030015,P67) p(17.36626070504659,7.472207198586493,P68) p(15.698964281183004,6.3676155840195054,P69) p(14.916088289926329,6.98979335790241,P70) p(15.472800465058018,11.95380797078254,P71) p(14.663783470683073,11.366022718490056,P72) p(15.577328928325674,10.959286075414264,P73) p(14.768311933950724,10.371500823121789,P74) p(16.441055769913504,11.703844644234,P75) p(16.173402708291263,12.667359998862164,P76) p(17.14165801314675,12.417396672313629,P77) p(17.409311074768993,11.453881317685465,P78) p(16.5756628628372,10.901585510401972,P79) p(17.470789168314234,10.455772884691314,P80) p(15.766645868462252,10.313800258109499,P81) p(15.748226716296687,8.647777703171435,P82) p(14.853100410819657,9.0935903288821,P83) p(15.686748622751445,9.64588613616559,P84) p(14.791622317274408,10.09169876187625,P85) p(16.66177217393929,9.054514346247238,P86) p(16.557243710671635,8.059992450878966,P87) p(17.470789168314234,8.466729093954765,P88) p(17.57531763158189,9.461250989323041,P89) p(16.661772173939287,9.867987632398838,P90) p(10.027571040157016,9.669055898416786,P91) p(11.013785520078507,9.834527949208393,P92) p(10.663981279719602,8.897705130620519,P93) p(11.650195759641093,9.063177181412126,P94) p(9.527571040157016,8.803030494632347,P95) p(9.027571040157017,9.669055898416772,P96) p(8.527571040157016,8.803030494632345,P97) p(9.027571040157016,7.937005090847909,P98) p(10.005718640890821,8.14491678166567,P99) p(9.696701646515875,7.193860265370514,P100) p(10.991933120812313,8.310388832457274,P101) p(12.193631393040421,7.1563127165737415,P102) p(12.50264838741537,8.107369232868894,P103) p(11.524500786681564,7.8994575420511355,P104) p(11.833517781056509,8.850514058346294,P105) p(12.811665381790318,9.058425749164046,P106) p(11.263371639559441,6.789411107073994,P107) p(12.046247630816108,6.167233333191089,P108) p(11.11598787733513,5.8003317236913405,P109) p(11.898863868591798,5.178153949808436,P110) p(10.33311188607846,6.422509497574248,P111) p(10.682916126437364,7.3593323161621225,P112) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P92,P5) s(P94,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P96,P9) s(P97,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P15,P18) s(P17,P18) s(P39,P18) s(P41,P18) s(P14,P19) s(P14,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P43,P22) s(P44,P22) s(P19,P23) s(P21,P23) s(P16,P24) s(P23,P24) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P72,P29) s(P74,P29) s(P25,P30) s(P25,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P76,P33) s(P77,P33) s(P30,P34) s(P32,P34) s(P27,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P28,P37) s(P35,P37) s(P41,P37) s(P46,P37) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P38,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P40,P46) s(P45,P46) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P48,P51) s(P50,P51) s(P47,P52) s(P47,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P53,P55) s(P54,P55) s(P52,P56) s(P54,P56) s(P49,P57) s(P56,P57) s(P56,P58) s(P57,P58) s(P69,P58) s(P70,P58) s(P50,P59) s(P57,P59) s(P63,P59) s(P70,P59) s(P60,P61) s(P60,P62) s(P61,P62) s(P61,P63) s(P62,P63) s(P61,P64) s(P63,P64) s(P83,P64) s(P85,P64) s(P60,P65) s(P60,P66) s(P65,P66) s(P65,P67) s(P66,P67) s(P66,P68) s(P67,P68) s(P87,P68) s(P88,P68) s(P65,P69) s(P67,P69) s(P62,P70) s(P69,P70) s(P71,P72) s(P71,P73) s(P72,P73) s(P72,P74) s(P73,P74) s(P71,P75) s(P71,P76) s(P75,P76) s(P75,P77) s(P76,P77) s(P75,P78) s(P77,P78) s(P73,P79) s(P78,P79) s(P78,P80) s(P79,P80) s(P89,P80) s(P90,P80) s(P74,P81) s(P79,P81) s(P85,P81) s(P90,P81) s(P82,P83) s(P82,P84) s(P83,P84) s(P83,P85) s(P84,P85) s(P82,P86) s(P82,P87) s(P86,P87) s(P86,P88) s(P87,P88) s(P86,P89) s(P88,P89) s(P84,P90) s(P89,P90) s(P91,P92) s(P91,P93) s(P92,P93) s(P92,P94) s(P93,P94) s(P91,P95) s(P91,P96) s(P95,P96) s(P95,P97) s(P96,P97) s(P95,P98) s(P97,P98) s(P93,P99) s(P98,P99) s(P98,P100) s(P99,P100) s(P111,P100) s(P112,P100) s(P94,P101) s(P99,P101) s(P105,P101) s(P112,P101) s(P102,P103) s(P102,P104) s(P103,P104) s(P103,P105) s(P104,P105) s(P103,P106) s(P105,P106) s(P102,P107) s(P102,P108) s(P107,P108) s(P107,P109) s(P108,P109) s(P108,P110) s(P109,P110) s(P107,P111) s(P109,P111) s(P104,P112) s(P111,P112) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P110,P55) abstand(P110,P55,A0) print(abs(P110,P55):,8.03,16.239) print(A0,9.33,16.239) color(red) s(P106,P51) abstand(P106,P51,A1) print(abs(P106,P51):,8.03,15.939) print(A1,9.33,15.939) print(min=0.9999999999999869,8.03,15.639) print(max=1.0000000000000095,8.03,15.339) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.927, vom Themenstarter, eingetragen 2017-04-23

Habe noch diesen gefunden. \geo ebene(272.93,309.36) x(8.04,13.5) y(9.6,15.79) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 47 edges. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(12,13,ab(12,13,[1,13],"gespiegelt"),Bew(2)); A(5,18); R(5,18); L(25,18,5); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.336241024604993,10.747946537248867,P6) p(9.020379810372374,9.799141133942427,P7) p(8.356620834977367,10.547087671191294,P8) p(8.040759620744748,9.598282267884855,P9) p(8.672482049209986,11.495893074497733,P10) p(9.669864552689017,11.423587184323415,P11) p(9.233792038683708,12.323498714713537,P12) p(10.669864552689017,11.423587184323415,P13) p(11.658857554843124,12.647193261461533,P14) p(12.094930068848432,11.74728173107141,P15) p(11.097547565369402,11.819587621245729,P16) p(11.533620079374721,10.919676090855624,P17) p(12.531002582853741,10.847370200681288,P18) p(10.696324796763417,12.918358689979753,P19) p(11.412427325528142,13.616353796192373,P20) p(10.449894567448435,13.88751922471059,P21) p(11.165997096213161,14.585514330923209,P22) p(9.733792038683708,13.189524118497975,P23) p(10.233792038683708,12.323498714713537,P24) p(12.999345411626784,9.963823374114154,P25) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P18,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P15,P18) s(P17,P18) s(P14,P19) s(P14,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P19,P23) s(P21,P23) s(P16,P24) s(P23,P24) s(P18,P25) s(P5,P25) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P18) abstand(P5,P18,A0) print(abs(P5,P18):,8.04,15.786) print(A0,9.34,15.786) print(min=0.99999999999998,8.04,15.486) print(max=1.0000000000000009,8.04,15.186) \geooff \geoprint() Leider ist der Graph starr, sonst hätten wir einen symmetrischen 4/10 mit 235 Kanten. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_10_sym_fast_-_slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.928, vom Themenstarter, eingetragen 2017-04-23

Diesen 2,4 Stern für eine unendliche 4/4 oder 4/8 Parkettierung müsste es eigentlich auch geben. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_2_4_stern_sym_neu_-_slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.929, vom Themenstarter, eingetragen 2017-04-23

@ Stefan Wie bekomme ich die äußeren Kanten (braun) weg und bei grün Beweglichkeit rein? http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_dreieckstefanbeweg2.png Und wie gibst du den Viertelteilgraph aus #928 ein? Ich schaffe es nicht eine Raute zu konstruieren bzw. einen freien Punkt einzugeben - falls das überhaupt möglich ist. ;-)


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.930, vom Themenstarter, eingetragen 2017-04-23

Noch zwei große Vögel. \geo ebene(467.19,357.34) x(8.03,17.37) y(8.79,15.93) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 47 edges. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(12,13,ab(12,13,[1,13],"gespiegelt"),Bew(2)); #A(22,18,ab(22,18,[1,25],"gespiegelt"),Bew(2)); R(5,29); A(5,29); L(47,29,5); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.36279793070692,10.770696777525776,P6) p(9.013955977401334,9.833515209411068,P7) p(8.376753908108252,10.604211986936846,P8) p(8.027911954802667,9.667030418822138,P9) p(8.72559586141384,11.541393555051553,P10) p(9.724633707334894,11.497537171053086,P11) p(9.263095527035166,12.384657516962035,P12) p(10.724633707334894,11.497537171053084,P13) p(11.718683277863825,12.831545057020342,P14) p(12.180221458163553,11.944424711111392,P15) p(11.1811836122425,11.988281095109862,P16) p(11.642721792542226,11.101160749200908,P17) p(12.641759638463277,11.057304365202437,P18) p(10.740889402449495,13.041113988883408,P19) p(11.411278358994046,13.78312385872552,P20) p(10.433484483579717,13.992692790588587,P21) p(11.103873440124266,14.7347026604307,P22) p(9.763095527035166,13.250682920746474,P23) p(10.263095527035166,12.384657516962035,P24) p(15.24971974665193,12.195430273081868,P25) p(14.547433937793954,11.483535166569194,P26) p(14.282057595153137,12.447680071013846,P27) p(13.579771786295156,11.735784964501171,P28) p(13.845148128935968,10.771640060056518,P29) p(15.148562452765715,13.190300717860291,P30) p(16.060724178361262,12.780470281754633,P31) p(15.959566884475043,13.775340726533054,P32) p(16.87172861007059,13.365510290427398,P33) p(15.0474051588795,14.185171162638715,P34) p(14.377016202334946,13.443161292796603,P35) p(14.069611283465168,14.394740094501781,P36) p(13.674730393476967,12.731266186283928,P37) p(12.026949800723717,12.960461968612798,P38) p(12.334354719593495,12.008883166907617,P39) p(13.004743676138048,12.75089303674973,P40) p(13.312148595007825,11.799314235044548,P41) p(12.564449466345046,13.803725930523278,P42) p(11.56541162042399,13.847582314521748,P43) p(12.10291128604532,14.690846276432229,P44) p(13.101949131966375,14.646989892433758,P45) p(13.367325474607188,13.682844987989109,P46) p(13.590833959054677,8.787874876624386,P47) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P29,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P15,P18) s(P17,P18) s(P39,P18) s(P41,P18) s(P14,P19) s(P14,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P43,P22) s(P44,P22) s(P19,P23) s(P21,P23) s(P16,P24) s(P23,P24) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P25,P30) s(P25,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P30,P34) s(P32,P34) s(P27,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P28,P37) s(P35,P37) s(P41,P37) s(P46,P37) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P38,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P40,P46) s(P45,P46) s(P29,P47) s(P5,P47) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P29) abstand(P5,P29,A0) print(abs(P5,P29):,8.03,15.935) print(A0,9.33,15.935) print(min=0.9999999999999956,8.03,15.635) print(max=1.9999999999999827,8.03,15.335) \geooff \geoprint() \geo ebene(474.3,392.52) x(8,17.49) y(8.41,16.26) form(.) #//Eingabe war: # #(2, 4)-regular matchstick graph with 47 edges. This graph is #rigid. # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(12,13,ab(12,13,[1,13],"gespiegelt"),Bew(2)); #A(22,18,ab(22,18,[1,25],"gespiegelt"),Bew(2)); R(5,29); A(5,29); L(47,29,5); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.44775179870258,10.833679749162568,P6) p(9.001888057955867,9.938578903063457,P7) p(8.449639856658447,10.772258652226025,P8) p(8.003776115911734,9.877157806126911,P9) p(8.89550359740516,11.667359498325137,P10) p(9.895492388508437,11.662624768364129,P11) p(9.399598389383092,12.531007829939762,P12) p(10.895492388508437,11.662624768364129,P13) p(11.8952182733882,13.264740835743705,P14) p(12.391112272513547,12.39635777416807,P15) p(11.391123481410268,12.40109250412908,P16) p(11.887017480535617,11.532709442553449,P17) p(12.887006271638894,11.527974712592437,P18) p(10.897408331385646,13.330887034733953,P19) p(11.453597591076258,14.161942693161716,P20) p(10.455787649073704,14.228088892151968,P21) p(11.011976908764318,15.059144550579735,P22) p(9.89959838938309,13.397033233724201,P23) p(10.39959838938309,12.531007829939764,P24) p(15.769864035856461,13.063762147784805,P25) p(15.209746186308593,12.235349210525934,P26) p(14.772378462592659,13.134631965976931,P27) p(14.21226061304479,12.306219028718058,P28) p(14.649628336760728,11.40693627326706,P29) p(15.388557021046845,13.988210610630075,P30) p(16.37980638176513,13.856207940673775,P31) p(15.998499366955514,14.780656403519043,P32) p(16.9897487276738,14.648653733562746,P33) p(15.007250006237228,14.91265907347534,P34) p(14.451060746546617,14.081603415047576,P35) p(14.009440064234676,14.97880527246559,P36) p(13.89094289699875,13.253190477788703,P37) p(12.003764907015018,13.322378427428472,P38) p(12.445385589327007,12.425176570010482,P39) p(13.001574849017565,13.25623222843822,P40) p(13.443195531329504,12.359030371020204,P41) p(12.507859698992942,14.186026759043092,P42) p(11.507870907889668,14.1907614890041,P43) p(12.011965699867595,15.054409820618725,P44) p(13.011954490970872,15.049675090657717,P45) p(13.449322214686807,14.150392335206718,P46) p(14.543256722535443,8.408822686411629,P47) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P29,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P15,P18) s(P17,P18) s(P39,P18) s(P41,P18) s(P14,P19) s(P14,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P43,P22) s(P44,P22) s(P19,P23) s(P21,P23) s(P16,P24) s(P23,P24) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P25,P30) s(P25,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P30,P34) s(P32,P34) s(P27,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P28,P37) s(P35,P37) s(P41,P37) s(P46,P37) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P38,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P40,P46) s(P45,P46) s(P29,P47) s(P5,P47) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P29) abstand(P5,P29,A0) print(abs(P5,P29):,8,16.259) print(A0,9.3,16.259) print(min=0.999999999999945,8,15.959) print(max=3.0000000000000053,8,15.659) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.931, vom Themenstarter, eingetragen 2017-04-23

Und ein 4/4 mit 204 mit dem gestutzten aus #920. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_mit_204_-_Slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.932, vom Themenstarter, eingetragen 2017-04-23

Info: Ich habe jetzt nur noch die englische Kurzversion des MGC im Notizbuch. MGC


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.933, vom Themenstarter, eingetragen 2017-04-23

\quoteon(2017-04-23 00:42 - Slash in Beitrag No. 928) Diesen 2,4 Stern für eine unendliche 4/4 oder 4/8 Parkettierung müsste es eigentlich auch geben. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_2_4_stern_sym_neu_-_slash.png \quoteoff So geschafft: Die Idee ist so nicht möglich. Bei 60 Grad fallen die Knoten zusammen und es ist dann ein 2/3/4/7, aber bei 90 Grad klappt es. Ist dann allerdings nichts Besonderes mehr. \geo ebene(379.89,429.89) x(9,16.6) y(8.5,17.1) form(.) #//Eingabe war: # # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); H(8,6,1,2); #A(7,8,ab(7,8,[1,7],"gespiegelt"),Bew(2)); N(15,11,3); N(16,15,4); N(17,12,15); #A(5,16,ab(5,16,[1,23],"gespiegelt"),Bew(2)); #A(29,32,ab(29,32,[1,32],"gespiegelt"),Bew(2)); R(45,13); R(49,17); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.499848883036643,10.865938138783774,P6) p(9.000000015225758,9.999825496370459,P7) p(9.749924441518322,10.432969069391888,P8) p(9.499848883036643,10.865938138783774,P9) p(9.999546603437258,11.732137993451524,P10) p(10.499848822131591,10.866287146041039,P11) p(10.999546542534224,11.73248700070529,P12) p(10.499244323837873,12.598337848119272,P13) p(10,10,P14) p(11.365862539959755,11.366307386164817,P15) p(12.365862539959755,11.366307386164818,P16) p(11.86556026036037,12.232507240832565,P17) p(13.73237635155385,9.000564070799447,P18) p(12.866188175776925,9.500282035399723,P19) p(13.73205071573668,10.000564017780102,P20) p(12.865862539959755,10.500281982380379,P21) p(14.59832617935191,9.500694949406746,P22) p(14.598477311543832,8.500694960827216,P23) p(14.165351265452879,9.250629510103096,P24) p(14.59832617935191,9.500694949406746,P25) p(14.598349550789838,10.500694949133633,P26) p(13.732312461526453,10.000715189531178,P27) p(13.732335832960885,11.000715189256045,P28) p(14.598372922227764,11.500694948860522,P29) p(13.73237635155385,9.000564070799447,P30) p(13.23205071573668,10.86658942156454,P31) p(13.232074087174606,11.866589421291428,P32) p(11.365409068356993,15.098619848157067,P33) p(12.231573884930073,14.598861395971486,P34) p(11.36568796129483,14.0986198870477,P35) p(12.231852777867907,13.59886143486212,P36) p(13.097738701503149,14.099102943785907,P37) p(10.499435863946568,14.59852944708628,P38) p(10.49933147463573,15.598529441637712,P39) p(10.93242246615178,14.848574647621671,P40) p(10.499435863946568,14.59852944708628,P41) p(10.499365749627223,13.598529449544287,P42) p(11.365426208439139,14.098468727531543,P43) p(11.365356094123289,13.09846872999157,P44) p(10.499295635306353,12.59852945199659,P45) p(11.365409068356993,15.098619848157067,P46) p(11.86564748022582,13.232571112768623,P47) p(12.731812296798898,12.732812660583043,P48) p(11.865577365908274,12.232571115233341,P49) p(15.097738699318253,14.099009458022996,P50) p(14.097738700410702,14.099056200904451,P51) p(14.59769821934169,13.233007426625374,P52) p(13.59769822043414,13.23305416950683,P53) p(15.597849339291452,13.233047941680846,P54) p(16.09773869115685,14.099137218771602,P55) p(15.347794019304851,13.666028699851921,P56) p(15.59784933929145,13.233047941680846,P57) p(15.098111130759609,12.366871445270684,P58) p(14.597849384975348,13.232745677302571,P59) p(14.098111176441485,12.366569180895905,P60) p(15.097738699318253,14.099009458022996,P61) p(13.73181229570645,12.732765917701588,P62) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P19,P5) s(P21,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P9,P7) s(P14,P7) s(P9,P10) s(P9,P11) s(P10,P11) s(P10,P12) s(P11,P12) s(P10,P13) s(P12,P13) s(P9,P14) s(P11,P15) s(P3,P15) s(P15,P16) s(P4,P16) s(P21,P16) s(P31,P16) s(P12,P17) s(P15,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P18,P22) s(P18,P23) s(P22,P23) s(P25,P23) s(P30,P23) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P58,P29) s(P60,P29) s(P25,P30) s(P20,P31) s(P27,P31) s(P28,P32) s(P31,P32) s(P60,P32) s(P62,P32) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P34,P37) s(P36,P37) s(P51,P37) s(P53,P37) s(P33,P38) s(P33,P39) s(P38,P39) s(P41,P39) s(P46,P39) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P41,P46) s(P35,P47) s(P43,P47) s(P36,P48) s(P47,P48) s(P53,P48) s(P62,P48) s(P44,P49) s(P47,P49) s(P50,P51) s(P50,P52) s(P51,P52) s(P51,P53) s(P52,P53) s(P50,P54) s(P50,P55) s(P54,P55) s(P57,P55) s(P61,P55) s(P57,P58) s(P57,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P57,P61) s(P52,P62) s(P59,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P45,P13) abstand(P45,P13,A0) print(abs(P45,P13):,9,17.099) print(A0,10.3,17.099) color(red) s(P49,P17) abstand(P49,P17,A1) print(abs(P49,P17):,9,16.799) print(A1,10.3,16.799) print(min=0.9999999999987511,9,16.499) print(max=1.000000000031732,9,16.199) \geooff \geoprint() \geo ebene(379.9,429.9) x(7.63,15.23) y(9.5,18.1) form(.) #//Eingabe war: # # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); H(8,6,1,2); #A(7,8,ab(7,8,[1,7],"gespiegelt"),Bew(2)); N(15,11,3); N(16,15,4); N(17,12,15); #A(5,16,ab(5,16,[1,23],"gespiegelt"),Bew(2)); #A(29,32,ab(29,32,[1,32],"gespiegelt"),Bew(2)); R(45,13); R(49,17); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.133974595977342,10.499999999587393,P6) p(9.133974596453779,9.499999999587393,P7) p(9.566987297988671,10.249999999793697,P8) p(9.133974595977342,10.499999999587393,P9) p(8.63397459515213,11.366025402895396,P10) p(9.63397459515213,11.366025403848269,P11) p(9.133974594326919,12.232050807156272,P12) p(8.133974594326917,12.232050806203397,P13) p(10,10,P14) p(10.499999998973422,11.866025403784437,P15) p(11.499999998973422,11.866025403784437,P16) p(9.99999999814821,12.732050807092442,P17) p(13.732050806542299,11.000000001778087,P18) p(12.866025403271149,10.500000000889044,P19) p(12.86602540224457,11.500000000889044,P20) p(11.999999998973422,11,P21) p(14.232050806065862,11.866025405837597,P22) p(14.732050806542299,11.000000002328228,P23) p(13.98205080630408,11.43301270380784,P24) p(14.232050806065862,11.866025405837597,P25) p(14.232050805992158,12.866025405837597,P26) p(13.36602540224457,12.366025405773765,P27) p(13.366025402170866,13.366025405773765,P28) p(14.232050805918451,13.866025405837597,P29) p(13.732050806542299,11.000000001778087,P30) p(12.366025402244572,12.366025404673481,P31) p(12.366025402170866,13.366025404673481,P32) p(8.633974593521454,15.098076209437693,P33) p(9.499999996718897,15.598076210454398,P34) p(9.499999997892887,14.598076210454398,P35) p(10.36602540109033,15.098076211471103,P36) p(10.366025399916342,16.098076211471103,P37) p(8.13397459412555,14.232050805304471,P38) p(7.633974593521456,15.098076208740139,P39) p(8.383974593823503,14.665063507371082,P40) p(8.13397459412555,14.232050805304471,P41) p(8.133974594346668,13.232050805304475,P42) p(8.999999998020549,13.732050805495966,P43) p(8.999999998241663,12.732050805495973,P44) p(8.13397459444735,12.232050805753937,P45) p(8.633974593521454,15.098076209437693,P46) p(9.999999998020547,13.732050806743663,P47) p(10.866025401217993,14.232050807760368,P48) p(9.999999998194937,12.732050806918052,P49) p(12.36602539991634,16.09807621176592,P50) p(11.366025399916342,16.098076211618512,P51) p(11.866025400044004,15.232050807907779,P52) p(10.866025400044002,15.232050807760368,P53) p(13.232050804012705,15.59807621230619,P54) p(13.232050803388857,16.59807621230619,P55) p(12.799038101964523,15.848076212036055,P56) p(13.232050804012705,15.59807621230619,P57) p(13.73205080496558,14.732050809071893,P58) p(12.732050804965578,14.732050807971607,P59) p(13.232050805918451,13.86602540473731,P60) p(12.366025399916342,16.09807621176592,P61) p(11.866025401217993,14.232050807907779,P62) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P19,P5) s(P21,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P9,P7) s(P14,P7) s(P9,P10) s(P9,P11) s(P10,P11) s(P10,P12) s(P11,P12) s(P10,P13) s(P12,P13) s(P9,P14) s(P11,P15) s(P3,P15) s(P15,P16) s(P4,P16) s(P21,P16) s(P31,P16) s(P12,P17) s(P15,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P18,P22) s(P18,P23) s(P22,P23) s(P25,P23) s(P30,P23) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P58,P29) s(P60,P29) s(P25,P30) s(P20,P31) s(P27,P31) s(P28,P32) s(P31,P32) s(P60,P32) s(P62,P32) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P34,P37) s(P36,P37) s(P51,P37) s(P53,P37) s(P33,P38) s(P33,P39) s(P38,P39) s(P41,P39) s(P46,P39) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P41,P46) s(P35,P47) s(P43,P47) s(P36,P48) s(P47,P48) s(P53,P48) s(P62,P48) s(P44,P49) s(P47,P49) s(P50,P51) s(P50,P52) s(P51,P52) s(P51,P53) s(P52,P53) s(P50,P54) s(P50,P55) s(P54,P55) s(P57,P55) s(P61,P55) s(P57,P58) s(P57,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P57,P61) s(P52,P62) s(P59,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P45,P13) abstand(P45,P13,A0) print(abs(P45,P13):,7.63,18.098) print(A0,8.93,18.098) color(red) s(P49,P17) abstand(P49,P17,A1) print(abs(P49,P17):,7.63,17.798) print(A1,8.93,17.798) print(min=0.9999999995505382,7.63,17.498) print(max=1.0000000000000073,7.63,17.198) \geooff \geoprint() Eine unendliche 4/4-Parkettierung könnte so aussehen. Geht natürlich auch mit den äußeren Dreiecken im 45 Grad Winkel. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_unendlich_parkettierung_-_slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.934, vom Themenstarter, eingetragen 2017-04-23

Ist dieser Graph tatsächlich möglich? Oder ist das eine Rechenungenauigkeit? In der anderen Richtung fallen die Knoten nämlich aufeinander. \geo ebene(702.06,377.15) x(5.28,14.06) y(9.14,13.85) form(.) \geo ebene(702.06,392.15) x(5.28,14.06) y(9.14,14.04) form(.) #//Eingabe war: # # # # #D=80; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); H(8,6,1,2); #A(7,8,ab(7,8,[1,7],"gespiegelt"),Bew(2)); N(15,11,3); N(16,15,4); N(17,12,15); #A(17,16,ab(17,16,[1,23],"gespiegelt"),Bew(2)); #L(33,22,5); L(34,13,30); A(22,5); A(13,30); #H(35,22,5,2); H(36,22,33,2); H(37,33,5,2); A(35,36); A(36,37); A(37,35); #H(38,13,30,2); H(39,30,34,2); H(40,34,13,2); A(38,39); A(39,40); A(40,38); #R(5,22); R(15,32); R(9,14); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.000063639175922,10.011281591283968,P6) p(9.490261674940932,9.13967050500057,P7) p(9.50003181958796,10.005640795641984,P8) p(9.000063639175922,10.011281591283968,P9) p(8.000318187779719,10.033843337949559,P10) p(8.51972995924397,10.888367422843816,P11) p(7.519984507847767,10.910929169509407,P12) p(7.000572736383516,10.056405084615148,P13) p(10,10,P14) p(9.511440685173827,11.016858029798863,P15) p(10.511440685173827,11.016858029798863,P16) p(8.511695233777624,11.039419776464456,P17) p(10.023072279775533,12.04499621497935,P18) p(11.022817731171735,12.022434468313755,P19) p(10.50340595970748,11.1679103834195,P20) p(11.503151411103683,11.145348636753912,P21) p(12.02256318256794,11.999872721648163,P22) p(9.023135918951454,12.05627780626332,P23) p(9.532874244010525,12.916607301262749,P24) p(9.523104099363493,12.050637010621333,P25) p(9.023135918951454,12.056277806263319,P26) p(8.023135918951454,12.056277806263324,P27) p(8.523135918951452,11.190252402478883,P28) p(7.523135918951452,11.190252402478887,P29) p(7.0231359189514535,12.056277806263326,P30) p(10.023072279775533,12.04499621497935,P31) p(9.511695233777624,11.03941977646446,P32) p(13.743222172566805,10.98039607153002,P33) p(5.279913746384638,11.075881734733297,P34) p(12.01128159128397,10.999936360824082,P35) p(12.882892677567371,11.490134396589092,P36) p(12.871611086283401,10.49019803576501,P37) p(7.011854327667485,11.056341445439237,P38) p(6.151524832668047,11.566079770498312,P39) p(6.140243241384077,10.566143409674224,P40) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P9,P7) s(P14,P7) s(P9,P10) s(P9,P11) s(P10,P11) s(P10,P12) s(P11,P12) s(P10,P13) s(P12,P13) s(P30,P13) s(P9,P14) s(P11,P15) s(P3,P15) s(P15,P16) s(P4,P16) s(P21,P16) s(P32,P16) s(P12,P17) s(P15,P17) s(P29,P17) s(P32,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P19,P22) s(P21,P22) s(P5,P22) s(P18,P23) s(P18,P24) s(P23,P24) s(P26,P24) s(P31,P24) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P26,P31) s(P20,P32) s(P28,P32) s(P22,P33) s(P5,P33) s(P13,P34) s(P30,P34) s(P36,P35) s(P37,P36) s(P35,P37) s(P39,P38) s(P40,P39) s(P38,P40) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P22) abstand(P5,P22,A0) print(abs(P5,P22):,5.28,14.042) print(A0,6.09,14.042) color(red) s(P15,P32) abstand(P15,P32,A1) print(abs(P15,P32):,5.28,13.854) print(A1,6.09,13.854) color(red) s(P9,P14) abstand(P9,P14,A2) print(abs(P9,P14):,5.28,13.667) print(A2,6.09,13.667) print(min=0.9999999999999952,5.28,13.479) print(max=2.00000000000002,5.28,13.292) \geooff \geoprint() Eine mögliche Fehlerquelle könnte P8 sein, den ich zum Spiegeln auf die Mitte der Kante P6,P1 bzw. P9,P14 (Doppelbenennung der Knoten) gesetzt habe, so dass diese Kante womöglich einen minimalen Knick hat. Laut Programm aber nicht. Hier kurz vor dem Zusammenfall und dem Zerknüllen des Graphen. \geo ebene(523.51,507.88) x(9,15.54) y(9,15.35) form(.) #//Eingabe war: # # # # #D=80; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); H(8,6,1,2); #A(7,8,ab(7,8,[1,7],"gespiegelt"),Bew(2)); N(15,11,3); N(16,15,4); N(17,12,15); #A(17,16,ab(17,16,[1,23],"gespiegelt"),Bew(2)); #L(33,22,5); L(34,13,30); A(22,5); A(13,30); #H(35,22,5,2); H(36,22,33,2); H(37,33,5,2); A(35,36); A(36,37); A(37,35); #H(38,13,30,2); H(39,30,34,2); H(40,34,13,2); A(38,39); A(39,40); A(40,38); #R(5,22); //R(15,32); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.499848883036643,10.865938138783774,P6) p(9.000000015225758,9.999825496370459,P7) p(9.749924441518322,10.432969069391888,P8) p(9.499848883036643,10.865938138783774,P9) p(9.999546603437258,11.732137993451524,P10) p(10.499848822133796,10.866287146037223,P11) p(10.999546542534226,11.73248700070529,P12) p(10.499244323837871,12.598337848119273,P13) p(10,10,P14) p(11.365862539960926,11.366307386162791,P15) p(12.365862539960926,11.366307386162791,P16) p(11.86556026036154,12.23250724083054,P17) p(14.73157391728629,12.732876488208746,P18) p(14.231876196885676,11.866676633540997,P19) p(13.731573978189324,12.732527480954978,P20) p(13.23187625778871,11.866327626287228,P21) p(13.73217847648506,11.00047677887325,P22) p(14.231422800322935,13.598814626992521,P23) p(15.231422785097177,13.598989130622062,P24) p(14.481498358804613,13.165845557600633,P25) p(14.231422800322935,13.598814626992521,P26) p(13.231422800322935,13.598814626992523,P27) p(13.73142280032312,12.732789223207762,P28) p(12.731422800322935,12.732789223208082,P29) p(12.231422800322935,13.598814626992525,P30) p(14.73157391728629,12.732876488208746,P31) p(12.86556026036154,12.23250724083054,P32) p(13.73252754464319,9.000127824911937,P33) p(10.498895255679741,14.59868680208059,P34) p(12.86608923824253,10.500238389436625,P35) p(13.732353010564125,10.000302301892592,P36) p(12.866263772321595,9.500063912455968,P37) p(11.365333562080403,13.0985762375559,P38) p(11.365159028001338,14.098750714536557,P39) p(10.499069789758806,13.598512325099932,P40) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P9,P7) s(P14,P7) s(P9,P10) s(P9,P11) s(P10,P11) s(P10,P12) s(P11,P12) s(P10,P13) s(P12,P13) s(P30,P13) s(P9,P14) s(P11,P15) s(P3,P15) s(P15,P16) s(P4,P16) s(P21,P16) s(P32,P16) s(P12,P17) s(P15,P17) s(P29,P17) s(P32,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P19,P22) s(P21,P22) s(P5,P22) s(P18,P23) s(P18,P24) s(P23,P24) s(P26,P24) s(P31,P24) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P26,P31) s(P20,P32) s(P28,P32) s(P22,P33) s(P5,P33) s(P13,P34) s(P30,P34) s(P36,P35) s(P37,P36) s(P35,P37) s(P39,P38) s(P40,P39) s(P38,P40) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P22) abstand(P5,P22,A0) print(abs(P5,P22):,9,15.349) print(A0,9.81,15.349) print(min=0.9999999999999994,9,15.161) print(max=2.0003490430000186,9,14.974) \geooff \geoprint()


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.935, eingetragen 2017-04-24

Der Graph ist möglich und deine Eingabe stimmt. Der erste Teilgraph P1 bis P6 geht auch ohne zusätzlichen Punkt P8 zu spiegeln und die Seitendreiecke kann man ohne Kanten der Länge 2 eingeben. Für die Kanten- und Winkelberechnung ist das aber egal. Erst wenn mit dem extra GAP-Programm die Beweglichkeit bestimmt werden soll, dann ist es besser, wenn nur die endgültigen Kanten (die Streichhölzer) eingegeben sind. \geo ebene(702.06,377.15) x(7.28,16.06) y(10.14,14.85) form(.) #//Eingabe war: # ##934-1 # # # #D=80; P[1]=[2*D,D]; P[2]=[3*D,D]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); A(1,6,ab(6,1,[2,5],"gespiegelt")); N(12,9,3); #N(13,12,4); N(14,10,12); A(13,14,ab(13,14,[1,14],"gespiegelt")); #Q(27,19,5,ab(3,5,[1,5]),D); Q(31,11,25,D,ab(4,1,[1,5])); A(5,30); R(5,30); #A(11,33); R(11,33); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(12,11,P1) p(13,11,P2) p(12.5,11.86602540378444,P3) p(13.5,11.86602540378444,P4) p(14,11,P5) p(11.000063639175922,11.011281591283968,P6) p(11.490261674940932,10.13967050500057,P7) p(10.000318187779719,11.033843337949575,P8) p(10.51972995924397,11.888367422843816,P9) p(9.519984507847767,11.910929169509405,P10) p(9.000572736383516,11.056405084615138,P11) p(11.511440685173827,12.016858029798861,P12) p(12.511440685173827,12.016858029798861,P13) p(10.511695233777624,12.039419776464456,P14) p(12.023072279775533,13.04499621497935,P15) p(13.022817731171735,13.022434468313755,P16) p(12.503405959707482,12.1679103834195,P17) p(13.503151411103683,12.145348636753905,P18) p(14.022563182567938,12.999872721648162,P19) p(11.023135918951454,13.056277806263319,P20) p(11.532874244010525,13.916607301262749,P21) p(10.023135918951454,13.056277806263303,P22) p(10.52313591895145,12.190252402478883,P23) p(9.523135918951452,12.190252402478887,P24) p(9.023135918951454,13.056277806263333,P25) p(11.511695233777624,12.03941977646445,P26) p(14.871611086283398,11.490198035765012,P27) p(15.743222172566798,11.98039607153002,P28) p(14.882892677567368,12.490134396589092,P29) p(14.011281591283968,11.999936360824083,P30) p(8.140243241384102,11.566143409674236,P31) p(8.15152483266806,12.566079770498314,P32) p(9.011854327667496,12.056341445439255,P33) p(7.279913746384666,12.075881734733294,P34) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P30,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P6,P8) s(P6,P9) s(P8,P9) s(P8,P10) s(P9,P10) s(P8,P11) s(P10,P11) s(P33,P11) s(P9,P12) s(P3,P12) s(P12,P13) s(P4,P13) s(P18,P13) s(P26,P13) s(P10,P14) s(P12,P14) s(P24,P14) s(P26,P14) s(P15,P16) s(P15,P17) s(P16,P17) s(P16,P18) s(P17,P18) s(P16,P19) s(P18,P19) s(P29,P19) s(P30,P19) s(P15,P20) s(P15,P21) s(P20,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P22,P25) s(P24,P25) s(P17,P26) s(P23,P26) s(P28,P27) s(P29,P27) s(P5,P27) s(P28,P29) s(P29,P30) s(P27,P30) s(P11,P31) s(P32,P31) s(P33,P31) s(P25,P32) s(P25,P33) s(P32,P33) s(P32,P34) s(P31,P34) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P30) abstand(P5,P30,A0) print(abs(P5,P30):,7.28,14.854) print(A0,8.09,14.854) color(red) s(P11,P33) abstand(P11,P33,A1) print(abs(P11,P33):,7.28,14.667) print(A1,8.09,14.667) print(min=0.9999999999999826,7.28,14.479) print(max=1.0000000000000377,7.28,14.292) \geooff \geoprint() \quoteon(2017-04-23 03:10 - Slash in Beitrag No. 929 Wie bekomme ich die äußeren Kanten (braun) weg und bei grün Beweglichkeit rein? http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_dreieckstefanbeweg2.png \quoteoff Das kommt darauf an, wie die Lage des Punktes P9 bestimmt sein soll. Wenn P9 bestimmte Koordianten 100,200 haben soll, dann als P[9]=[100,200] eingeben. Wenn P9 auch ohne den Kanten zu P7 und P8 stets Abstand 1 zu diesen Punkten haben soll, dann kann man mit Eingabe Z(9,8) und Z(9,7) diese Kanten wieder löschen. In früheren Versionen war das A(9,8) und A(9,7) aber es soll jetzt Eingabefunktion Z sein. \quoteon(2017-04-22 20:46 - Slash in Beitrag No. 924) Also ich bekomme keine Kreisgraphen hin, egal mit welchen Teilgraphen der letzten drei Graphen ich arbeite. Aber das sollte Stefan noch mal überprüfen. So firm bin ich ja noch nicht mit dem Programm. \quoteoff Als ich den Graph fertig hatte, war die Sache schon geklärt. Naja, ich ergänze es trotzdem mal noch: P65 muss entweder zu P9 gebracht werden oder genügend Platz dazwischen für einen weiteren Teilgraph. Die Animation zeigt, nur das erstere geht, dann fallen aber die schmalen Rauten zusammen. \geo ebene(388.47,404.39) x(8.89,16.66) y(8.4,16.49) form(.) #//Eingabe war: # ##926? # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(5,13,ab(5,13,[1,13],"gespiegelt"),Bew(2)); A(21,24,ab(9,12,[1,24])); #A(43,46,ab(9,12,[1,24])); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(10.447590175145539,10.894238802061947,P6) p(9.449361567937359,10.834743863191337,P7) p(9.896951743082896,11.728982665253284,P8) p(8.898723135874718,11.669487726382672,P9) p(10.895180350291076,11.788477604123894,P10) p(11.492701315798495,10.986624315935162,P11) p(11.888366150724313,11.905019295452757,P12) p(12.492701315798495,10.986624315935162,P13) p(13.201584758981081,8.401189796447252,P14) p(12.60079237949054,9.200594898223626,P15) p(13.593493695289034,9.321193810374348,P16) p(12.992701315798495,10.120598912150722,P17) p(13.647535053193518,9.296247523687144,P18) p(14.199702635730608,8.462514376454083,P19) p(14.645652929943047,9.357572103693974,P20) p(15.197820512480138,8.523838956460914,P21) p(14.093485347405956,10.191305250927035,P22) p(13.093493695289036,10.187219214158787,P23) p(13.589950909705395,11.055280406848535,P24) p(16.157401202224403,10.278605294145198,P25) p(15.689201989585241,11.162228232555055,P26) p(15.158061683875236,10.314944351172741,P27) p(14.689862471236072,11.198567289582597,P28) p(15.22100277694608,12.045851170964912,P29) p(15.15766991671815,10.25542433687389,P30) p(15.67761085735227,9.401222125303056,P31) p(14.677879571846018,9.378041168031748,P32) p(14.157938631211898,10.232243379602584,P33) p(14.586715744308867,11.13565368908783,P34) p(14.118516531669702,12.019276627497687,P35) p(16.07116710889486,13.85616070490713,P36) p(15.64608494292047,12.951005937936019,P37) p(15.074739003354107,13.771715275851108,P38) p(14.649656837379709,12.866560508880001,P39) p(15.071479993278235,13.831147291103548,P40) p(15.549661299297274,14.709408435965326,P41) p(14.549974183680646,14.684395022161747,P42) p(15.028155489699685,15.56265616702353,P43) p(14.071792877661611,13.806133877299969,P44) p(14.543598697644095,12.924431394468794,P45) p(13.544119038941243,12.9566868101262,P46) p(13.028328778770385,15.588983458067228,P47) p(12.466749784202248,14.761560330000432,P48) p(13.464108730070945,14.688930218506098,P49) p(12.902529735502808,13.861507090439304,P50) p(11.90517078963411,13.934137201933638,P51) p(13.516885405074378,14.716451267890577,P52) p(14.028242134235036,15.57581981254538,P53) p(14.516798760539027,14.703287622368729,P54) p(14.005442031378369,13.843919077713927,P55) p(13.006414852371563,13.799820374720472,P56) p(12.444835857803428,12.972397246653674,P57) p(9.907493488988393,13.837776408636554,P58) p(10.906332139311253,13.8859568052851,P59) p(10.448638261611867,12.99684696149947,P60) p(11.447476911934727,13.04502735814801,P61) p(10.397648635610395,12.966141202693176,P62) p(9.397712831119545,12.977471996894526,P63) p(9.887867977741548,12.105836790951138,P64) p(8.887932173250693,12.117167585152496,P65) p(10.887803782232394,12.094505996749792,P66) p(11.445997207480566,12.924216850005136,P67) p(11.885451171571274,12.025951736887093,P68) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P15,P5) s(P17,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P23,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P14,P18) s(P14,P19) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P31,P21) s(P32,P21) s(P18,P22) s(P20,P22) s(P16,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P33,P24) s(P34,P24) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P37,P29) s(P39,P29) s(P25,P30) s(P25,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P27,P34) s(P33,P34) s(P28,P35) s(P34,P35) s(P39,P35) s(P45,P35) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P36,P40) s(P36,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P53,P43) s(P54,P43) s(P40,P44) s(P42,P44) s(P38,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P55,P46) s(P56,P46) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P48,P51) s(P50,P51) s(P59,P51) s(P61,P51) s(P47,P52) s(P47,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P52,P55) s(P54,P55) s(P49,P56) s(P55,P56) s(P50,P57) s(P56,P57) s(P61,P57) s(P67,P57) s(P58,P59) s(P58,P60) s(P59,P60) s(P59,P61) s(P60,P61) s(P58,P62) s(P58,P63) s(P62,P63) s(P62,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P62,P66) s(P64,P66) s(P60,P67) s(P66,P67) s(P66,P68) s(P67,P68) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) pen(2) print(min=0.9999999999999961,8.89,16.489) print(max=1.00000000000001,8.89,16.189) \geooff \geoprint() Bei der Variante #926 kann man den letzten Teilgraph ohne die Punkte P18 und P22 kopieren \geo ebene(502.39,523.02) x(8.03,18.08) y(5.18,15.64) form(.) #//Eingabe war: # #Eingabevariante zu #926 # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #A(12,13,ab(12,13,[1,13],"gespiegelt"),Bew(2)); #A(22,18,ab(22,18,[1,24],"gespiegelt"),Bew(2)); #A(33,29,ab(33,29,[1,46],"gespiegelt"),Bew(2)); #A(5,9,ab(5,9,[1,17],[19,21],23,24,"gespiegelt"),Bew(2)); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.363589757010727,10.771350764969048,P6) p(9.01378552081361,9.834527944827187,P7) p(8.377375277824335,10.605878709796233,P8) p(8.027571041627217,9.669055889654372,P9) p(8.727179514021454,11.542701529938094,P10) p(9.72624641510479,11.499512096511138,P11) p(9.264116111085924,12.38632412964298,P12) p(10.72624641510479,11.499512096511136,P13) p(11.720411309512635,12.836526137485583,P14) p(12.182541613531498,11.949714104353742,P15) p(11.183474712448165,11.9929035377807,P16) p(11.645605016467027,11.106091504648854,P17) p(12.644671917550365,11.0629020712219,P18) p(10.74226371029928,13.0444378354565,P19) p(11.411394322092729,13.787582656040566,P20) p(10.433246722879375,13.995494354011484,P21) p(11.102377334672823,14.738639174595551,P22) p(9.764116111085924,13.252349533427417,P23) p(10.264116111085924,12.38632412964298,P24) p(15.255970935806538,12.205341479567776,P25) p(14.555368685306854,11.491789458622716,P26) p(14.287715633496546,12.455304815976522,P27) p(13.587113382996867,11.741752795031458,P28) p(13.854766434807173,10.778237437677653,P29) p(15.151442487084687,13.199863376464876,P30) p(16.064987938778387,12.793126720027628,P31) p(15.96045949005654,13.787648616924725,P32) p(16.87400494175024,13.380911960487477,P33) p(15.04691403836284,14.194385273361974,P34) p(14.37778342656939,13.451240452777908,P35) p(14.068766439149485,14.402296971332893,P36) p(13.677181176069709,12.737688431832847,P37) p(12.026637942710556,12.965015108331867,P38) p(12.335654930130465,12.013958589776887,P39) p(13.004785541923907,12.75710341036095,P40) p(13.313802529343821,11.806046891805966,P41) p(12.563574539775024,13.80863770803675,P42) p(11.56450763869169,13.851827141463708,P43) p(12.101444235756158,14.695449741168593,P44) p(13.100511136839494,14.652260307741635,P45) p(13.368164188649803,13.688744950387832,P46) p(12.51689775842135,7.080267023914891,P47) p(12.664281545184128,8.069346403641042,P48) p(13.447157521004932,7.44716861033545,P49) p(13.594541307767711,8.4362479900616,P50) p(12.811665331946905,9.058425783367191,P51) p(13.186028343041837,6.33712217886419,P52) p(12.207880736226228,6.129210516659059,P53) p(12.877011320846718,5.386065671608357,P54) p(11.898863714031112,5.178154009403229,P55) p(13.855158927662334,5.593977333813487,P56) p(13.959687412748696,6.588499226888519,P57) p(14.768704394228283,6.000713956847111,P58) p(14.107071199511475,7.57757860661467,P59) p(15.57600800464808,8.36383241140727,P60) p(14.76699102316849,8.951617681448678,P61) p(14.662462538082128,7.957095788373644,P62) p(13.853445556602534,8.54488105841505,P63) p(13.957974041688892,9.539402951490088,P64) p(15.637486080729978,7.3657239773374705,P65) p(16.47113430232498,7.918019770035085,P66) p(16.53261237840688,6.919911335965285,P67) p(17.36626060000188,7.4722071286629,P68) p(15.698964156811872,6.3676155432676715,P69) p(14.916088180991064,6.989793336573259,P70) p(15.472800440750877,11.953807918597354,P71) p(14.663783437779013,11.366022678137515,P72) p(15.577328889472728,10.959286021700255,P73) p(14.768311886500875,10.371500781240407,P74) p(16.441055743060865,11.70384458218861,P75) p(16.17340269125056,12.667359939542415,P76) p(17.14165799356055,12.417396603133673,P77) p(17.409311045370856,11.453881245779868,P78) p(16.575662823775854,10.901585453082253,P79) p(17.470789121452757,10.45577281171007,P80) p(15.766645820804001,10.313800212622404,P81) p(15.7482266370427,8.647777668745718,P82) p(14.853100339365803,9.093590310117905,P83) p(15.686748560960801,9.645886102815515,P84) p(14.791622263283903,10.091698744187708,P85) p(16.66177210360865,9.054514291779343,P86) p(16.557243618522293,8.059992398704312,P87) p(17.470789085088242,8.466729021737933,P88) p(17.5753175701746,9.46125091481297,P89) p(16.661772118480904,9.867987571250218,P90) p(10.027571041627217,9.669055889654372,P91) p(11.01378552081361,9.834527944827185,P92) p(10.66398128461649,8.897705124685324,P93) p(11.650195763802882,9.063177179858139,P94) p(9.527571041627217,8.803030485869934,P95) p(9.027571041627215,9.66905588965439,P96) p(8.527571041627217,8.803030485869934,P97) p(9.027571041627217,7.937005082085495,P98) p(10.005718640840572,8.14491678005641,P99) p(9.696701653420664,7.1938602615014275,P100) p(10.991933120026964,8.310388835229226,P101) p(12.193631394745742,7.156312737403049,P102) p(12.502648382165647,8.107369255958032,P103) p(11.524500782952293,7.899457557987114,P104) p(11.833517770372195,8.850514076542103,P105) p(11.263371645577841,6.789411116967715,P106) p(12.046247644148465,6.167233352287839,P107) p(11.115987894980565,5.800331731852505,P108) p(10.333111896409939,6.422509496532381,P109) p(10.682916132607058,7.359332316674243,P110) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P92,P5) s(P94,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P96,P9) s(P97,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P23,P12) s(P24,P12) s(P11,P13) s(P4,P13) s(P17,P13) s(P24,P13) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P15,P18) s(P17,P18) s(P39,P18) s(P41,P18) s(P14,P19) s(P14,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P43,P22) s(P44,P22) s(P19,P23) s(P21,P23) s(P16,P24) s(P23,P24) s(P25,P26) s(P25,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P26,P29) s(P28,P29) s(P72,P29) s(P74,P29) s(P25,P30) s(P25,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P76,P33) s(P77,P33) s(P30,P34) s(P32,P34) s(P27,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P28,P37) s(P35,P37) s(P41,P37) s(P46,P37) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P38,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P40,P46) s(P45,P46) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P48,P51) s(P50,P51) s(P47,P52) s(P47,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P53,P55) s(P54,P55) s(P52,P56) s(P54,P56) s(P49,P57) s(P56,P57) s(P56,P58) s(P57,P58) s(P69,P58) s(P70,P58) s(P50,P59) s(P57,P59) s(P63,P59) s(P70,P59) s(P60,P61) s(P60,P62) s(P61,P62) s(P61,P63) s(P62,P63) s(P61,P64) s(P63,P64) s(P83,P64) s(P85,P64) s(P60,P65) s(P60,P66) s(P65,P66) s(P65,P67) s(P66,P67) s(P66,P68) s(P67,P68) s(P87,P68) s(P88,P68) s(P65,P69) s(P67,P69) s(P62,P70) s(P69,P70) s(P71,P72) s(P71,P73) s(P72,P73) s(P72,P74) s(P73,P74) s(P71,P75) s(P71,P76) s(P75,P76) s(P75,P77) s(P76,P77) s(P75,P78) s(P77,P78) s(P73,P79) s(P78,P79) s(P78,P80) s(P79,P80) s(P89,P80) s(P90,P80) s(P74,P81) s(P79,P81) s(P85,P81) s(P90,P81) s(P82,P83) s(P82,P84) s(P83,P84) s(P83,P85) s(P84,P85) s(P82,P86) s(P82,P87) s(P86,P87) s(P86,P88) s(P87,P88) s(P86,P89) s(P88,P89) s(P84,P90) s(P89,P90) s(P91,P92) s(P91,P93) s(P92,P93) s(P92,P94) s(P93,P94) s(P91,P95) s(P91,P96) s(P95,P96) s(P95,P97) s(P96,P97) s(P95,P98) s(P97,P98) s(P93,P99) s(P98,P99) s(P98,P100) s(P99,P100) s(P109,P100) s(P110,P100) s(P94,P101) s(P99,P101) s(P105,P101) s(P110,P101) s(P102,P103) s(P102,P104) s(P103,P104) s(P103,P105) s(P104,P105) s(P102,P106) s(P102,P107) s(P106,P107) s(P106,P108) s(P107,P108) s(P106,P109) s(P108,P109) s(P104,P110) s(P109,P110) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) print(min=0.9999999999999869,8.03,15.639) print(max=1.0000000000000095,8.03,15.339) \geooff \geoprint() und dann den Graph durch zusätzliche Kanten P51-P105, P51-103, P55-P53 und P55-P108 schließen und mit einer davon den blauen Winkel einstellen. Dann entstehen keine übereinanderliegende Knoten. Wie gesagt, für die Kanten- und Winkelbestimmung ist das egal, nur das extra GAP-Programm würde unterschiedliche Beweglichkeit ausgeben. \quoteon(2017-04-22 07:33 - haribo in Beitrag No. 923) Toll das du endlich , mit dem Werkzeug, Erfolge erreichst \quoteoff Diesen Worten schließe ich mich an. Du hast ein schwieriges Level geschafft, da ist jetzt ein Bonus-Level fällig, in Form eines extra Buttons ".pov" (Streichholzgraph-935.htm ganz unten zweiter von rechts) zum Erstellen einer povray-Datei. Diese Datei hat folgenden Aufbau \sourceon nameDerSprache // POV-Ray 3.6 / 3.7 Scene File "Streichholzgraph.pov" #version 3.6; // 3.7; global_settings{ assumed_gamma 1.0 } #default{ finish{ ambient 0.1 diffuse 0.9 }} #include "colors.inc" #include "textures.inc" // camera ------------------------------------------------------------------ #declare Cam0 =camera {ultra_wide_angle angle 90 location <100.0 ,100 ,0> right x*image_width/image_height look_at <100.0 , 0 ,100>} camera{Cam0} //<1 // sun --------------------------------------------------------------------- light_source{<1500,2500,-2500> color White} // sky --------------------------------------------------------------------- sphere{<0,0,0>,1 hollow texture{pigment{gradient <0,1,0> color_map{[0 color White] [1 color Blue ]} quick_color White } finish {ambient 1 diffuse 0} } scale 10000} // ground------------------------------------------------------------------ plane{ <0,1,0>, 0 texture{ pigment { color rgb <0.80,0.55,0.35>*1.1} normal { bumps 0.75 scale 0.035 } finish { phong 0.1 } } // end of texture } // end of plane //========================================================================== #declare Holz = union{ box{<5,-1,-1>,<45,1,1>} texture { pigment{ color rgb<1,0.65,0>} finish { phong 0.9} } } union{ object{ Holz rotate<0,-144.55154654412448,0> translate <200.61,0,82>} object{ Holz rotate<0,155.44845345587552,0> translate <200.61,0,82>} object{ Holz rotate<0,124.40347782773537,0> translate <229.18,0,123.72>} object{ Holz rotate<0,64.40347782773534,0> translate <178.76442015411322,0,127.6023457861214>} object{ Holz rotate<0,4.403477827735354,0> translate <178.76442015411322,0,127.6023457861214>} object{ Holz rotate<0,124.40347782773537,0> translate <207.33442015411322,0,169.3223457861214>} object{ Holz rotate<0,64.40347782773534,0> translate <207.33442015411322,0,169.3223457861214>} object{ Holz rotate<0,-175.59652217226463,0> translate <257.75,0,165.43999999999997>} object{ Holz rotate<0,124.40347782773537,0> translate <257.75,0,165.43999999999997>} object{ Holz rotate<0,64.40347782773539,0> translate <156.91884030822646,0,173.2046915722428>} object{ Holz rotate<0,4.403477827735372,0> translate <156.91884030822646,0,173.2046915722428>} object{ Holz rotate<0,139.92596564180542,0> translate <156.91884030822646,0,173.2046915722428>} object{ Holz rotate<0,-84.55154654412448,0> translate <113.42481197575981,0,90.31582161772826>} object{ Holz rotate<0,-144.55154654412448,0> translate <159.41797691264406,0,111.32610669643574>} object{ Holz rotate<0,155.44845345587552,0> translate <159.41797691264406,0,111.32610669643574>} object{ Holz rotate<0,-144.55154654412453,0> translate <154.6168350631158,0,60.989714921292546>} object{ Holz rotate<0,-84.55154654412453,0> translate <154.6168350631158,0,60.989714921292546>} object{ Holz rotate<0,-84.55154654412448,0> translate <108.62367012623149,0,39.97942984258505>} object{ Holz rotate<0,-24.551546544124488,0> translate <108.62367012623149,0,39.97942984258505>} object{ Holz rotate<0,-154.87156780186487,0> translate <108.62367012623149,0,39.97942984258505>} object{ Holz rotate<0,-94.87156780186484,0> translate <108.62367012623149,0,39.97942984258505>} object{ Holz rotate<0,79.92596564180543,0> translate <109.38112400728312,0,190.4374751225293>} object{ Holz rotate<0,19.92596564180545,0> translate <109.38112400728312,0,190.4374751225293>} object{ Holz rotate<0,100.65092001220506,0> translate <109.38112400728312,0,190.4374751225293>} object{ Holz rotate<0,160.65092001220518,0> translate <109.38112400728312,0,190.4374751225293>} object{ Holz rotate<0,-63.826592173724755,0> translate <17.065082040359073,0,82.92402377152484>} object{ Holz rotate<0,-123.82659217372476,0> translate <17.065082040359073,0,82.92402377152484>} object{ Holz rotate<0,-154.87156780186498,0> translate <62.84437608329531,0,61.45172680705498>} object{ Holz rotate<0,145.12843219813502,0> translate <58.550283710661574,0,111.83390689779031>} object{ Holz rotate<0,85.12843219813502,0> translate <58.550283710661574,0,111.83390689779031>} object{ Holz rotate<0,145.12843219813513,0> translate <104.32957775359787,0,90.36160993332041>} object{ Holz rotate<0,-154.87156780186498,0> translate <104.32957775359787,0,90.36160993332041>} object{ Holz rotate<0,145.1284321981352,0> translate <100.03548538096426,0,140.74379002405573>} object{ Holz rotate<0,85.12843219813516,0> translate <100.03548538096426,0,140.74379002405573>} object{ Holz rotate<0,-139.34907998779488,0> translate <100.03548538096426,0,140.74379002405573>} object{ Holz rotate<0,-3.8265921737247983,0> translate <11.220197635085583,0,170.30964745350695>} object{ Holz rotate<0,-63.82659217372477,0> translate <39.368696515770225,0,128.30410840489935>} object{ Holz rotate<0,-123.82659217372483,0> translate <39.368696515770225,0,128.30410840489935>} object{ Holz rotate<0,-63.826592173724855,0> translate <-11.083416840325484,0,124.92956282013242>} object{ Holz rotate<0,-3.8265921737248356,0> translate <-11.083416840325484,0,124.92956282013242>} object{ Holz rotate<0,-3.826592173724869,0> translate <-39.23191572101011,0,166.93510186874>} object{ Holz rotate<0,56.17340782627517,0> translate <-39.23191572101011,0,166.93510186874>} rotate<0,0,0> translate<0,0.7,0>} //------------------------------------------------------------- end ------------------------------------ \sourceoff Nur die Zeilen "object{ Holz..." müssen vom Streichholzpgrogramm erzeugt werden, alles andere habe ich aus dem Beispiel povpawn.pov kopiert.


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.936, eingetragen 2017-04-24

\quoteon(2017-04-19 19:27 - haribo in Beitrag No. 918) Die Datei IMG_5456.JPG steht jetzt als uploads/b/35059_IMG_5456.JPG IMG_5456.JPG Ich kämpfe mit dem hochladen... http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_IMG_5456.JPG \quoteoff Hallo haribo, ich habe das so eingegeben und dabei stellte sich heraus, dass zusätzlich noch Kante P19-P26 auf Länge 1 gebracht werden muss, mit dem Winkel 1 (in der Eingabe der blaue Winkel). Dadurch wird der Graph starr und am Ende hat man keine Möglichkeit mehr, P4-P106 und/oder P95-P107 oder etwas anderes einzustellen. Bezeichnungen sind P1=N, P5=N', P11=A, P10=B... usw., am besten im neuen Streichholzgraph-935.htm (Link im vorhergehenden Beitrag) anschauen: Graph hineinkopieren, Button "Beweis" und dann die Eingabeschritte der Reihe nach anklicken. Es hilft nicht viel, wenn ich hier die Punktbezeichnungen hinschreibe und man muss dann einen nach dem anderen im Graph suchen. P13 ist der zusätzliche Punkt C (ich habe eine Weile gebraucht um zu sehen, warum der 2*b' über A liegt). Später mache ich aus P13 die Spitze vom Außendreieck, damit kein zusätzlicher Punkt übrigbleibt. Anstelle Gleichheit von P9-P10 und P9-P22 einstellen (geht nicht mit der bisherigen Programmversion) füge ich eine erste Kopie des skizzierten Teilgraphen an und stelle dann mit Winkel 2 (grüner Winkel) den Abstand P22-P28 auf 1 ein. Das erzeugt auch P9-P10=P9-22. \geo ebene(495.98,644.93) x(9.01,18.93) y(6.32,19.22) form(.) #//Eingabe war: # ##918 # # # # #P[1]=[0,100]; P[2]=[50,100]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,1,3); #L(5,4,3); M(6,1,2,blauerWinkel); N(7,2,6); M(8,6,7,gruenerWinkel); N(9,7,8); #L(10,8,6); L(11,2,7); N(12,11,9); # #P[13]=[P[11][0]+2*(P[6][0]-P[10][0]),P[11][1]+2*(P[6][1]-P[10][1])]; # #Q(14,5,13,ab(5,2,[1,5]),D); Z(13,14); #L(13,15,17); Q(18,11,14,D,ab(5,2,[1,5])); N(22,18,12); A(21,22); # # #A(9,12,ab(9,8,[1,9],[11,22])); A(22,28); R(22,28); # #R(19,26); # #R(9,10); R(9,22); # #A(9,31,ab(9,8,[1,41])); #A(9,70,ab(9,8,[1,22])); # #N(101,90,8); N(102,101,10); L(103,10,102); L(104,102,10); L(105,102,104); #L(106,105,104); R(97,105); R(106,4); # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,12,P1) p(11,12,P2) p(10.5,12.866025403784437,P3) p(9.5,12.866025403784437,P4) p(10,13.732050807568877,P5) p(10.995870681533697,11.909216820602005,P6) p(11.995870681533699,11.909216820602005,P7) p(11.810507662125483,11.329245623168632,P8) p(12.810507662125481,11.329245623168632,P9) p(10.90091938138901,10.913734901830583,P10) p(11.576555880361832,12.817057719393308,P11) p(12.391192860953616,12.237086521959935,P12) p(9.00785755202151,15.468614472661306,P13) p(11.00783702526981,15.459553204237345,P14) p(9.503928776010754,14.600332640115091,P15) p(10.503918499764008,14.595802013412083,P16) p(10.00784728864566,15.464083838449326,P17) p(10.817934424980432,13.4685893666945,P18) p(11.822474005861595,14.879582006803972,P19) p(10.912885739958957,14.464071284051037,P20) p(11.727522705716906,13.88410008803255,P21) p(11.632571405572218,12.888618169261129,P22) p(12.24095845692012,14.161996663368674,P23) p(12.660273258091987,13.254155764577373,P24) p(13.23682913845382,14.071213483970679,P25) p(12.817514337281953,14.97905438276198,P26) p(13.813385018815652,14.888271203363985,P27) p(12.576125090560506,13.219837797946196,P28) p(12.99543989173237,12.311996899154893,P29) p(13.64379008676877,13.073339151099617,P30) p(13.458857857161881,12.090587875113355,P31) p(14.973888524033214,16.517145543016298,P32) p(15.804283329135938,14.697682856490847,P33) p(14.393636771424434,15.702708373190141,P34) p(14.808834175395788,14.792977044760764,P35) p(15.389085926584576,15.607414199753574,P36) p(13.9171759583177,14.03524359814071,P37) p(15.619351099529048,13.714931580504585,P38) p(14.860729648662376,14.366463213255734,P39) p(14.67579741411993,13.383711951329518,P40) p(13.732243728710815,13.052492322154448,P41) p(15.143374500774403,13.034120124719013,P42) p(14.495024305738005,12.272777872774288,P43) p(15.478541134414789,12.091961259296534,P44) p(16.126891329451187,12.85330351124126,P45) p(16.462057963091574,11.91114464581878,P46) p(14.42858447992943,12.334780989463134,P47) p(13.78023428489303,11.57343873751841,P48) p(13.732243728089509,13.05249232233103,P49) p(14.74327475230775,11.304081988722992,P50) p(13.773548129540202,11.059888874373213,P51) p(18.42743300416917,11.540603220456875,P52) p(17.123847196112465,10.023809219600743,P53) p(17.44474548363037,11.725873933137827,P54) p(16.792952593663763,10.967476937640475,P55) p(17.775640100140816,10.78220622002881,P56) p(15.731165692432626,11.459231885336536,P57) p(16.15412057334492,9.779616105250964,P58) p(16.42750643357781,10.741520542092355,P59) p(15.457779821504996,10.49732743811886,P60) p(14.761439069665077,11.215038770986755,P61) p(15.336468056547861,9.926252808249751,P62) p(14.373427589133144,10.195609557045168,P63) p(14.621678035702889,9.226913672993874,P64) p(15.584718503117607,8.957556924198455,P65) p(14.86992848227263,8.258217788942575,P66) p(14.40185735196699,10.281925172769183,P67) p(13.43881688455227,10.551281921564602,P68) p(13.5981009337448,9.564049126488976,P69) p(12.96979171131801,10.342012828093006,P70) p(15.357646666210268,6.318596441087131,P71) p(13.434026213276022,6.866030777837247,P72) p(15.11378757424145,7.288407115014852,P73) p(14.151977358146928,7.562124272691606,P74) p(14.395836439743146,6.592313609462188,P75) p(14.153189648471763,8.73225797554857,P76) p(12.80571699084923,7.643994479441277,P77) p(13.793607916969416,7.799144382051094,P78) p(13.165298708447105,8.577108078296938,P79) p(13.524880426044973,9.510221677152598,P80) p(12.595985984587013,8.44777981515172,P81) p(12.436701935394485,9.435012610227345,P82) p(11.661375280006142,8.803452179671153,P83) p(11.820659329198671,7.816219384595526,P84) p(10.886048624617796,8.171891749114959,P85) p(12.526983801903137,9.445396324029184,P86) p(12.36769975271061,10.43262911910481,P87) p(13.524880426582236,9.510221677511137,P88) p(11.538239604129918,9.874063221545265,P89) p(11.981047513544791,10.770679725609089,P90) p(9.329688490191625,6.915809294827443,P91) p(9.020069242743814,8.891697935821629,P92) p(10.107868557404707,7.543850521971201,P93) p(9.953058928317832,8.531794828565664,P94) p(9.174878866467722,7.9037536153245345,P95) p(11.015862492102013,9.021348642785536,P96) p(9.462877152158688,9.78831443988545,P97) p(10.01796586645694,8.956523304173402,P98) p(10.460773776837785,9.853139793367404,P99) p(11.458670401516883,9.91796514684936,P100) p(10.981047513544791,10.77067972560909,P101) p(10.071459232808317,10.355169004271039,P102) p(10.969921564072884,9.916118392953118,P103) p(10.002457050124441,11.352785513148504,P104) p(9.172996901543751,10.794219615588961,P105) p(9.103994718859875,11.791836124466425,P106) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P1,P4) s(P3,P4) s(P4,P5) s(P3,P5) s(P15,P5) s(P1,P6) s(P2,P7) s(P6,P7) s(P6,P8) s(P7,P9) s(P8,P9) s(P29,P9) s(P48,P9) s(P68,P9) s(P87,P9) s(P8,P10) s(P6,P10) s(P2,P11) s(P7,P11) s(P11,P12) s(P9,P12) s(P28,P12) s(P15,P13) s(P17,P13) s(P16,P14) s(P17,P14) s(P19,P14) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P11,P18) s(P20,P18) s(P21,P18) s(P19,P20) s(P14,P20) s(P19,P21) s(P20,P21) s(P22,P21) s(P18,P22) s(P12,P22) s(P28,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P23,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P34,P27) s(P23,P28) s(P24,P29) s(P28,P29) s(P24,P30) s(P29,P30) s(P9,P31) s(P30,P31) s(P47,P31) s(P34,P32) s(P36,P32) s(P35,P33) s(P36,P33) s(P38,P33) s(P27,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P30,P37) s(P39,P37) s(P40,P37) s(P33,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P41,P40) s(P31,P41) s(P37,P41) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P54,P46) s(P42,P47) s(P43,P48) s(P47,P48) s(P47,P49) s(P31,P49) s(P43,P50) s(P48,P50) s(P9,P51) s(P50,P51) s(P67,P51) s(P54,P52) s(P56,P52) s(P55,P53) s(P56,P53) s(P58,P53) s(P46,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P50,P57) s(P59,P57) s(P60,P57) s(P53,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P61,P60) s(P51,P61) s(P57,P61) s(P67,P61) s(P62,P63) s(P62,P64) s(P63,P64) s(P62,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P73,P66) s(P62,P67) s(P63,P68) s(P67,P68) s(P63,P69) s(P68,P69) s(P9,P70) s(P69,P70) s(P86,P70) s(P73,P71) s(P75,P71) s(P74,P72) s(P75,P72) s(P77,P72) s(P66,P74) s(P73,P74) s(P73,P75) s(P74,P75) s(P69,P76) s(P78,P76) s(P79,P76) s(P72,P78) s(P77,P78) s(P77,P79) s(P78,P79) s(P80,P79) s(P70,P80) s(P76,P80) s(P81,P82) s(P81,P83) s(P82,P83) s(P81,P84) s(P83,P84) s(P83,P85) s(P84,P85) s(P93,P85) s(P81,P86) s(P82,P87) s(P86,P87) s(P86,P88) s(P70,P88) s(P82,P89) s(P87,P89) s(P9,P90) s(P89,P90) s(P93,P91) s(P95,P91) s(P94,P92) s(P95,P92) s(P97,P92) s(P85,P94) s(P93,P94) s(P93,P95) s(P94,P95) s(P89,P96) s(P98,P96) s(P99,P96) s(P92,P98) s(P97,P98) s(P97,P99) s(P98,P99) s(P100,P99) s(P90,P100) s(P96,P100) s(P90,P101) s(P8,P101) s(P101,P102) s(P10,P102) s(P10,P103) s(P102,P103) s(P102,P104) s(P10,P104) s(P102,P105) s(P104,P105) s(P105,P106) s(P104,P106) pen(2) color(#008000) m(P7,P6,MA10) m(P6,P8,MB10) b(P6,MA10,MB10) color(#0000FF) m(P2,P1,MA11) m(P1,P6,MB11) b(P1,MA11,MB11) pen(2) color(red) s(P22,P28) abstand(P22,P28,A0) print(abs(P22,P28):,9.01,19.217) print(A0,10.31,19.217) color(red) s(P19,P26) abstand(P19,P26,A1) print(abs(P19,P26):,9.01,18.917) print(A1,10.31,18.917) color(red) s(P9,P10) abstand(P9,P10,A2) print(abs(P9,P10):,9.01,18.617) print(A2,10.31,18.617) color(red) s(P9,P22) abstand(P9,P22,A3) print(abs(P9,P22):,9.01,18.317) print(A3,10.31,18.317) color(red) s(P97,P105) abstand(P97,P105,A4) print(abs(P97,P105):,9.01,18.017) print(A4,10.31,18.017) color(red) s(P106,P4) abstand(P106,P4,A5) print(abs(P106,P4):,9.01,17.717) print(A5,10.31,17.717) print(min=0.9999999870952121,9.01,17.417) print(max=1.0000000000000029,9.01,17.117) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.937, vom Themenstarter, eingetragen 2017-04-24

Hier mal ein Test. Der Graph geht aber nicht. Allerdings stimmt der fed Code nicht, ist nicht vollständig. Warum? \geo ebene(505.01,614.78) x(7.91,18.01) y(9.21,21.5) form(.) #//Eingabe war: # ##926? # # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #M(14,9,8,green_angle,1); N(16,12,14); L(17,16,12); #A(15,17,ab(15,17,[1,17],"gespiegelt"),Bew(2)); N(33,14,16); R(33,32); R(33,31); #A(33,32); A(33,31); #A(13,5,ab(13,5,[1,33],"gespiegelt"),Bew(2)); #A(30,22,ab(30,22,[1,33],"gespiegelt"),Bew(2)); Z(75,77); Z(68,77); Z(68,69); #Z(66,69); #R(61,75); R(61,68); R(66,53); R(68,53); # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(10.215711724504354,10.976457091689829,P6) p(9.262219215143315,10.675040379159835,P7) p(9.477930939647669,11.651497470849662,P8) p(8.52443843028663,11.35008075831967,P9) p(10.431423449008708,11.952914183379656,P10) p(11.302791817301086,11.462284825575338,P11) p(11.292005120855881,12.462226647472892,P12) p(12.302791817301086,11.462284825575338,P13) p(9.421367407734381,11.79225539510307,P14) p(8.589968450646925,12.347931356571522,P15) p(10.395076143408131,12.020052010689492,P16) p(10.460606163768423,13.017902608941343,P17) p(8.188766002696546,15.057176126078597,P18) p(8.961387697558932,15.692042818091949,P19) p(9.124887533427893,14.70549945681946,P20) p(9.897509228290279,15.34036614883281,P21) p(9.734009392421317,16.326909510105303,P22) p(8.975349644578888,14.43969238190138,P23) p(8.047301214756319,14.0672328379186,P24) p(8.83388485663866,13.449749093741385,P25) p(7.90583642681609,13.077289549758603,P26) p(9.76193328646123,13.822208637724167,P27) p(10.123687154626895,14.754482277203039,P28) p(10.750182875611339,13.97505741771485,P29) p(10.89630884948928,15.389348969216393,P30) p(8.879545162489839,13.305086165345028,P31) p(9.77647413993759,13.747260802128427,P32) p(9.710944119577297,12.749410203876575,P33) p(13.835543430334567,9.205783206324867,P34) p(12.917771715167284,9.602891603162433,P35) p(13.72056353246837,10.199151024953332,P36) p(12.802791817301086,10.5962594217909,P37) p(14.025328621216133,10.187608843249288,P38) p(14.780721969438737,9.53233722822156,P39) p(14.970507160320304,10.514162865145982,P40) p(15.725900508542907,9.858891250118255,P41) p(14.215113812097702,11.16943448017371,P42) p(13.22056353246837,11.065176428737772,P43) p(13.627548551190449,11.97861126195566,P44) p(15.078315723662735,10.620884653233862,P45) p(16.06201376071709,10.800712826486567,P46) p(14.275133336070617,11.216617858840051,P47) p(14.611246588244805,12.158439435208363,P48) p(17.50608986656134,13.127860184492185,P49) p(17.04911042276303,14.017337439932584,P50) p(16.50729024536234,13.176843004875764,P51) p(16.050310801564027,14.066320260316164,P52) p(16.592130978964715,14.906814695372983,P53) p(16.538977668704987,12.873510038517297,P54) p(17.242807455503694,12.163141379851332,P55) p(16.27569525764734,11.908791233876446,P56) p(16.97952504444605,11.198422575210484,P57) p(15.571865470848627,12.61915989254241,P58) p(15.610071693181204,13.618429768289236,P59) p(14.725575484381647,13.151882389538471,P60) p(15.153092249382894,14.507907023729636,P61) p(16.176342656853933,11.794155780816675,P62) p(15.528757871973761,12.55614918393228,P63) p(15.192644619799575,11.614327607563968,P64) p(15.973908125597369,17.405889932582426,P65) p(16.185535375995208,16.428539480140184,P66) p(15.233311430581093,16.733940131383726,P67) p(15.444938680978936,15.756589678941486,P68) p(16.397162626393047,15.45118902769795,P69) p(15.065217824379314,16.98841905159521,P70) p(15.158022586713141,17.984103377116185,P71) p(14.249332285495086,17.566632496128967,P72) p(14.342137047828913,18.562316821649944,P73) p(14.156527523161259,16.57094817060799,P74) p(14.820449639858124,15.823146443570163,P75) p(13.840873288901058,15.622073887895258,P76) p(15.032076890255965,14.845795991127924,P77) p(14.099792079809593,17.592126677154692,P78) p(13.380755252185072,18.28709864818638,P79) p(14.083218256920386,16.592264032390503,P80) p(13.12183646127654,16.317045858926946,P81) p(10.647968280017942,18.1058640209861,P82) p(10.190988836219628,17.216386765545703,P83) p(11.189788457418631,17.26536958592928,P84) p(10.73280901362032,16.37589233048888,P85) p(11.41792883010475,17.46777252965432,P86) p(11.585551996493367,18.453623671607225,P87) p(12.355512546580176,17.815532180275444,P88) p(12.523135712968791,18.801383322228354,P89) p(12.187889380191558,16.829681038322537,P90) p(11.353288293287594,16.278826224656793,P91) p(12.247643099171052,15.831467888204728,P92) p(12.506561890079585,17.80152067746416,P93) p(12.26421692206026,16.831330532968913,P94) p(13.225598717704106,17.106548706432477,P95) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P35,P5) s(P37,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P11,P13) s(P4,P13) s(P37,P13) s(P43,P13) s(P9,P14) s(P9,P15) s(P14,P15) s(P26,P15) s(P31,P15) s(P12,P16) s(P14,P16) s(P16,P17) s(P12,P17) s(P29,P17) s(P32,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P19,P22) s(P21,P22) s(P83,P22) s(P85,P22) s(P18,P23) s(P18,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P24,P26) s(P25,P26) s(P23,P27) s(P25,P27) s(P20,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P21,P30) s(P28,P30) s(P85,P30) s(P91,P30) s(P26,P31) s(P29,P32) s(P31,P32) s(P14,P33) s(P16,P33) s(P32,P33) s(P31,P33) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P34,P38) s(P34,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P40,P42) s(P36,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P41,P45) s(P41,P46) s(P45,P46) s(P57,P46) s(P62,P46) s(P44,P47) s(P45,P47) s(P44,P48) s(P47,P48) s(P60,P48) s(P63,P48) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P50,P53) s(P52,P53) s(P49,P54) s(P49,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P55,P57) s(P56,P57) s(P54,P58) s(P56,P58) s(P51,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P52,P61) s(P59,P61) s(P57,P62) s(P60,P63) s(P62,P63) s(P45,P64) s(P47,P64) s(P62,P64) s(P63,P64) s(P65,P66) s(P65,P67) s(P66,P67) s(P66,P68) s(P67,P68) s(P65,P70) s(P65,P71) s(P70,P71) s(P70,P72) s(P71,P72) s(P71,P73) s(P72,P73) s(P70,P74) s(P72,P74) s(P67,P75) s(P74,P75) s(P74,P76) s(P75,P76) s(P73,P78) s(P73,P79) s(P78,P79) s(P89,P79) s(P93,P79) s(P76,P80) s(P78,P80) s(P76,P81) s(P80,P81) s(P92,P81) s(P94,P81) s(P82,P83) s(P82,P84) s(P83,P84) s(P83,P85) s(P84,P85) s(P82,P86) s(P82,P87) s(P86,P87) s(P86,P88) s(P87,P88) s(P87,P89) s(P88,P89) s(P86,P90) s(P88,P90) s(P84,P91) s(P90,P91) s(P90,P92) s(P91,P92) s(P89,P93) s(P92,P94) s(P93,P94) s(P78,P95) s(P80,P95) s(P93,P95) s(P94,P95) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) color(#008000) m(P8,P9,MA11) m(P9,P14,MB11) f(P9,MA11,MB11) pen(2) color(red) s(P33,P32) abstand(P33,P32,A0) print(abs(P33,P32):,7.91,21.501) print(A0,9.21,21.501) color(red) s(P33,P31) abstand(P33,P31,A1) print(abs(P33,P31):,7.91,21.201) print(A1,9.21,21.201) color(red) s(P61,P75) abstand(P61,P75,A2) print(abs(P61,P75):,7.91,20.901) print(A2,9.21,20.901) color(red) s(P61,P68) abstand(P61,P68,A3) print(abs(P61,P68):,7.91,20.601) print(A3,9.21,20.601) color(red) s(P66,P53) abstand(P66,P53,A4) print(abs(P66,P53):,7.91,20.301) print(A4,9.21,20.301) color(red) s(P68,P53) abstand(P68,P53,A5) print(abs(P68,P53):,7.91,20.001) print(A5,9.21,20.001) print(min=0.9999999999999959,7.91,19.701) print(max=1.000000000000003,7.91,19.401) \geooff \geoprint() @ Stefan: Ich habe gerade erst herausgefunden, dass man auf die Schrift "..._angle" klicken muss, um den Winkel mit den Buttons zu verändern. Wenn man also mehr als einen Winkel benutzt. Steht das schon irgendwo in der Kurzanleitung? Vielleicht habe ich es übersehen.


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.938, eingetragen 2017-04-24

Da hat bisher geholfen, die Anzahl der Punktbezeichnungen zu verringern, indem ich nolabel() und label() an geeigneten Stellen im fedgeo-Quelltext einfüge. Bei diesem Graphen reicht es zum Beispiel, die Punktbezeichnungen von P34 bis P47 auszuschalten. Ob das der wirkliche Grund ist, weiß ich nicht, ich verwende fedgeo so wie es ist. \geo ebene(505.01,614.78) x(7.91,18.01) y(9.21,21.5) form(.) #//Eingabe war: # ##926? # # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,2); L(10,8,6); N(11,10,3); L(12,10,11); N(13,11,4); #M(14,9,8,green_angle,1); N(16,12,14); L(17,16,12); #A(15,17,ab(15,17,[1,17],"gespiegelt"),Bew(2)); N(33,14,16); R(33,32); R(33,31); #A(33,32); A(33,31); #A(13,5,ab(13,5,[1,33],"gespiegelt"),Bew(2)); #A(30,22,ab(30,22,[1,33],"gespiegelt"),Bew(2)); Z(75,77); Z(68,77); Z(68,69); #Z(66,69); #R(61,75); R(61,68); R(66,53); R(68,53); # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(10.215711724504354,10.976457091689829,P6) p(9.262219215143315,10.675040379159835,P7) p(9.477930939647669,11.651497470849662,P8) p(8.52443843028663,11.35008075831967,P9) p(10.431423449008708,11.952914183379656,P10) p(11.302791817301086,11.462284825575338,P11) p(11.292005120855881,12.462226647472892,P12) p(12.302791817301086,11.462284825575338,P13) p(9.421367407734381,11.79225539510307,P14) p(8.589968450646925,12.347931356571522,P15) p(10.395076143408131,12.020052010689492,P16) p(10.460606163768423,13.017902608941343,P17) p(8.188766002696546,15.057176126078597,P18) p(8.961387697558932,15.692042818091949,P19) p(9.124887533427893,14.70549945681946,P20) p(9.897509228290279,15.34036614883281,P21) p(9.734009392421317,16.326909510105303,P22) p(8.975349644578888,14.43969238190138,P23) p(8.047301214756319,14.0672328379186,P24) p(8.83388485663866,13.449749093741385,P25) p(7.90583642681609,13.077289549758603,P26) p(9.76193328646123,13.822208637724167,P27) p(10.123687154626895,14.754482277203039,P28) p(10.750182875611339,13.97505741771485,P29) p(10.89630884948928,15.389348969216393,P30) p(8.879545162489839,13.305086165345028,P31) p(9.77647413993759,13.747260802128427,P32) p(9.710944119577297,12.749410203876575,P33) nolabel() p(13.835543430334567,9.205783206324867,P34) p(12.917771715167284,9.602891603162433,P35) p(13.72056353246837,10.199151024953332,P36) p(12.802791817301086,10.5962594217909,P37) p(14.025328621216133,10.187608843249288,P38) p(14.780721969438737,9.53233722822156,P39) p(14.970507160320304,10.514162865145982,P40) p(15.725900508542907,9.858891250118255,P41) p(14.215113812097702,11.16943448017371,P42) p(13.22056353246837,11.065176428737772,P43) p(13.627548551190449,11.97861126195566,P44) p(15.078315723662735,10.620884653233862,P45) p(16.06201376071709,10.800712826486567,P46) p(14.275133336070617,11.216617858840051,P47) label() p(14.611246588244805,12.158439435208363,P48) p(17.50608986656134,13.127860184492185,P49) p(17.04911042276303,14.017337439932584,P50) p(16.50729024536234,13.176843004875764,P51) p(16.050310801564027,14.066320260316164,P52) p(16.592130978964715,14.906814695372983,P53) p(16.538977668704987,12.873510038517297,P54) p(17.242807455503694,12.163141379851332,P55) p(16.27569525764734,11.908791233876446,P56) p(16.97952504444605,11.198422575210484,P57) p(15.571865470848627,12.61915989254241,P58) p(15.610071693181204,13.618429768289236,P59) p(14.725575484381647,13.151882389538471,P60) p(15.153092249382894,14.507907023729636,P61) p(16.176342656853933,11.794155780816675,P62) p(15.528757871973761,12.55614918393228,P63) p(15.192644619799575,11.614327607563968,P64) p(15.973908125597369,17.405889932582426,P65) p(16.185535375995208,16.428539480140184,P66) p(15.233311430581093,16.733940131383726,P67) p(15.444938680978936,15.756589678941486,P68) p(16.397162626393047,15.45118902769795,P69) p(15.065217824379314,16.98841905159521,P70) p(15.158022586713141,17.984103377116185,P71) p(14.249332285495086,17.566632496128967,P72) p(14.342137047828913,18.562316821649944,P73) p(14.156527523161259,16.57094817060799,P74) p(14.820449639858124,15.823146443570163,P75) p(13.840873288901058,15.622073887895258,P76) p(15.032076890255965,14.845795991127924,P77) p(14.099792079809593,17.592126677154692,P78) p(13.380755252185072,18.28709864818638,P79) p(14.083218256920386,16.592264032390503,P80) p(13.12183646127654,16.317045858926946,P81) p(10.647968280017942,18.1058640209861,P82) p(10.190988836219628,17.216386765545703,P83) p(11.189788457418631,17.26536958592928,P84) p(10.73280901362032,16.37589233048888,P85) p(11.41792883010475,17.46777252965432,P86) p(11.585551996493367,18.453623671607225,P87) p(12.355512546580176,17.815532180275444,P88) p(12.523135712968791,18.801383322228354,P89) p(12.187889380191558,16.829681038322537,P90) p(11.353288293287594,16.278826224656793,P91) p(12.247643099171052,15.831467888204728,P92) p(12.506561890079585,17.80152067746416,P93) p(12.26421692206026,16.831330532968913,P94) p(13.225598717704106,17.106548706432477,P95) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P35,P5) s(P37,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P11,P13) s(P4,P13) s(P37,P13) s(P43,P13) s(P9,P14) s(P9,P15) s(P14,P15) s(P26,P15) s(P31,P15) s(P12,P16) s(P14,P16) s(P16,P17) s(P12,P17) s(P29,P17) s(P32,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P19,P22) s(P21,P22) s(P83,P22) s(P85,P22) s(P18,P23) s(P18,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P24,P26) s(P25,P26) s(P23,P27) s(P25,P27) s(P20,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P21,P30) s(P28,P30) s(P85,P30) s(P91,P30) s(P26,P31) s(P29,P32) s(P31,P32) s(P14,P33) s(P16,P33) s(P32,P33) s(P31,P33) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P34,P38) s(P34,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P40,P42) s(P36,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P41,P45) s(P41,P46) s(P45,P46) s(P57,P46) s(P62,P46) s(P44,P47) s(P45,P47) s(P44,P48) s(P47,P48) s(P60,P48) s(P63,P48) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P50,P53) s(P52,P53) s(P49,P54) s(P49,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P55,P57) s(P56,P57) s(P54,P58) s(P56,P58) s(P51,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P52,P61) s(P59,P61) s(P57,P62) s(P60,P63) s(P62,P63) s(P45,P64) s(P47,P64) s(P62,P64) s(P63,P64) s(P65,P66) s(P65,P67) s(P66,P67) s(P66,P68) s(P67,P68) s(P65,P70) s(P65,P71) s(P70,P71) s(P70,P72) s(P71,P72) s(P71,P73) s(P72,P73) s(P70,P74) s(P72,P74) s(P67,P75) s(P74,P75) s(P74,P76) s(P75,P76) s(P73,P78) s(P73,P79) s(P78,P79) s(P89,P79) s(P93,P79) s(P76,P80) s(P78,P80) s(P76,P81) s(P80,P81) s(P92,P81) s(P94,P81) s(P82,P83) s(P82,P84) s(P83,P84) s(P83,P85) s(P84,P85) s(P82,P86) s(P82,P87) s(P86,P87) s(P86,P88) s(P87,P88) s(P87,P89) s(P88,P89) s(P86,P90) s(P88,P90) s(P84,P91) s(P90,P91) s(P90,P92) s(P91,P92) s(P89,P93) s(P92,P94) s(P93,P94) s(P78,P95) s(P80,P95) s(P93,P95) s(P94,P95) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) color(#008000) m(P8,P9,MA11) m(P9,P14,MB11) f(P9,MA11,MB11) pen(2) color(red) s(P33,P32) abstand(P33,P32,A0) print(abs(P33,P32):,7.91,21.501) print(A0,9.21,21.501) color(red) s(P33,P31) abstand(P33,P31,A1) print(abs(P33,P31):,7.91,21.201) print(A1,9.21,21.201) color(red) s(P61,P75) abstand(P61,P75,A2) print(abs(P61,P75):,7.91,20.901) print(A2,9.21,20.901) color(red) s(P61,P68) abstand(P61,P68,A3) print(abs(P61,P68):,7.91,20.601) print(A3,9.21,20.601) color(red) s(P66,P53) abstand(P66,P53,A4) print(abs(P66,P53):,7.91,20.301) print(A4,9.21,20.301) color(red) s(P68,P53) abstand(P68,P53,A5) print(abs(P68,P53):,7.91,20.001) print(A5,9.21,20.001) print(min=0.9999999999999959,7.91,19.701) print(max=1.000000000000003,7.91,19.401) \geooff \geoprint() Das Anklicken der Winkelbezeichnung muss irgendwo schonmal im Thread stehen. Ich hatte es nicht in die Kurzbeschreibung aufgenommen, weil die Funktion nicht beeinträchtigt ist. Man kann ja im Inputfeld oder im großen Eingabefenster den Winkel ändern. Es sollte in die noch nicht vorhandene ausführliche Beschreibung rein, in einen Abschnitt darüber, wie man sich die mühsame Eingabe über Tastatur vereinfachen kann.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.939, vom Themenstarter, eingetragen 2017-04-24

@ Stefan: Hast du schon einen Graphen ge"pov"ed?


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.940, eingetragen 2017-04-24

Ja, aber versuche es mal selber. Weist du wie es geht? Mein Versuch ist noch etwas ungünstige Beleuchtung und so, da muss man noch etwas probieren und ich habe auch keine Erfahrung und ich habe noch nie ein .png auf den Matheplanet hochgeladen und will auch dabei bleiben und lieber die Bits für Quelltext verwenden. Deshalb habe ich es als Quelltext gelassen.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.941, eingetragen 2017-04-24

\quoteon(2017-04-24 03:21 - StefanVogel in Beitrag No. 936) Hallo haribo, ich habe das so eingegeben und dabei stellte sich heraus, dass zusätzlich noch Kante P19-P26 auf Länge 1 gebracht werden muss, mit dem Winkel 1 (in der Eingabe der blaue Winkel). Dadurch wird der Graph starr und am Ende hat man keine Möglichkeit mehr, P4-P106 und/oder P95-P107 oder etwas anderes einzustellen. \quoteoff hallo stefan, habe ich die möglichkeit mir weitere winkel anzeigen zu lassen? also beispielsweise: winkel 10-9-22 erstmal einfach nur anzeigen... raus-messen sozusagen grus haribo hab einen weg gefunden: ich konstruiere einen neuen winkel in die zu messenden knoten verbinde sein offenes ende mit dem gewünschten 2. knoten, stelle ihn grob vorein und feinjustiere diesen nachträglich so dass er hineinpasst, die neue verbindungslinie also null wird erstaunliches ergebniss: oranger winkel 11-18-22 (die spitze der zweiten schmale raute)entspricht mit -5.208° dem blauen winkel!!! der gruene winkel beträgt -35.448° damit ist dieser kern jedenfals weitaus symetrischer als der kern unserer bisherigen 4/11er aber tatsächlich derzeit sind zwei davon nicht zu verbinden... \ \geo ebene(495.98,704.93) x(9.01,18.93) y(6.32,20.42) form(.) #//Eingabe war: # ##918 # # # # # #P[1]=[0,100]; P[2]=[50,100]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,1,3); #L(5,4,3); M(6,1,2,blauerWinkel); N(7,2,6); M(8,6,7,gruenerWinkel); N(9,7,8); #L(10,8,6); L(11,2,7); N(12,11,9); # #P[13]=[P[11][0]+2*(P[6][0]-P[10][0]),P[11][1]+2*(P[6][1]-P[10][1])]; # #Q(14,5,13,ab(5,2,[1,5]),D); Z(13,14); #L(13,15,17); Q(18,11,14,D,ab(5,2,[1,5])); N(22,18,12); A(21,22); # # #A(9,12,ab(9,8,[1,9],[11,22])); A(22,28); R(22,28); # #R(19,26); #R(100,11); #R(9,10); R(9,22); # #A(9,31,ab(9,8,[1,41])); #R(13,32); #M(100,18,22,orangerWinkel); #R(27,39); #R(8,7); R(7,12); R(12,29); # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,12,P1) p(11,12,P2) p(10.5,12.866025403784437,P3) p(9.5,12.866025403784437,P4) p(10,13.732050807568877,P5) p(10.995870681707245,11.90921682250579,P6) p(11.995870681707245,11.90921682250579,P7) p(11.810507661551117,11.329245624021887,P8) p(12.810507661551117,11.329245624021887,P9) p(10.900919380278815,10.913734903856815,P10) p(11.57655587879988,12.817057720495498,P11) p(12.39119285864375,12.237086522011593,P12) p(9.007857552201827,15.468614472764326,P13) p(11.007837025449188,15.459553204132694,P14) p(9.503928776100913,14.600332640166602,P15) p(10.503918499853699,14.595802013359755,P16) p(10.007847288825507,15.464083838448511,P17) p(10.817934422592323,13.468589366834742,P18) p(11.822474005293058,14.879582005648789,P19) p(10.912885738854591,14.464071284068833,P20) p(11.727522703864626,13.884100086999814,P21) p(11.632571402436195,12.888618168350838,P22) p(12.24095845039666,14.161996662253916,P23) p(12.660273253304027,13.254155764264212,P24) p(13.236829132103907,14.07121348475971,P25) p(12.817514329196541,14.979054382749418,P26) p(13.813385010903787,14.888271205255208,P27) p(12.576125087639259,13.219837798112902,P28) p(12.995439890546626,12.311996900123196,P29) p(13.643790082672137,13.073339154546797,P30) p(13.45885785367663,12.090587878445488,P31) p(14.973888513176597,16.51714554700553,P32) p(15.804283321568622,14.697682861981303,P33) p(14.393636762040188,15.70270837613037,P34) p(14.808834167656197,14.792977048451604,P35) p(15.389085917372611,15.607414204493416,P36) p(13.917175951162498,14.035243602457177,P37) p(15.619351092573115,13.714931585879995,P38) p(14.86072964130112,14.366463218159193,P39) p(14.675797407370053,13.383711956117931,P40) p(13.732243722166992,13.052492326355868,P41) p(15.14337449265968,13.034120134607582,P42) p(14.495024300534169,12.27277788018398,P43) p(15.478541129902277,12.091961270466566,P44) p(16.126891322027788,12.853303524890167,P45) p(16.46205795927039,11.911144660749152,P46) p(14.428584475825444,12.334780995252352,P47) p(13.780234283699931,11.57343874082875,P48) p(13.732243722166992,13.052492326355866,P49) p(14.743274752659424,11.30408199755641,P50) p(13.77354813051061,11.059888880749547,P51) p(18.42743300172623,11.540603242697511,P52) p(17.123847199311275,10.023809236992658,P53) p(17.444745480498305,11.725873951723331,P54) p(16.792952593352574,10.967476953801619,P55) p(17.77564010051875,10.782206239845085,P56) p(15.73116569199437,11.459231899199688,P57) p(16.15412057716246,9.779616120185793,P58) p(16.42750643495809,10.741520557719888,P59) p(15.457779823504008,10.497327451289308,P60) p(14.761439069845554,11.21503878239282,P61) p(15.336468063696415,9.926252824565925,P62) p(14.373427594736924,10.195609567838265,P63) p(14.621678046862181,9.226913685210695,P64) p(15.584718515821672,8.957556941938353,P65) p(14.869928498987438,8.258217802583125,P66) p(14.401857356395814,10.281925181938648,P67) p(13.438816887436323,10.551281925210988,P68) p(13.598100944177947,9.564049131353364,P69) p(12.969791718292742,10.342012830164261,P70) p(15.357646693847478,6.31859645747412,P71) p(13.434026237830519,6.8660307833919365,P72) p(15.11378759641746,7.288407130028624,P73) p(14.151977378781579,7.562124282289226,P74) p(14.395836465839,6.592313620433028,P75) p(14.15318966473,8.73225798430028,P76) p(12.805717011945315,7.643994482202834,P77) p(13.793607937375784,7.799144389204293,P78) p(13.165298725395054,8.577108082657004,P79) p(13.524880438844793,9.510221683111178,P80) p(11.576555878799853,12.817057720495466,P100) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P1,P4) s(P3,P4) s(P4,P5) s(P3,P5) s(P15,P5) s(P1,P6) s(P2,P7) s(P6,P7) s(P6,P8) s(P7,P9) s(P8,P9) s(P29,P9) s(P48,P9) s(P68,P9) s(P8,P10) s(P6,P10) s(P2,P11) s(P7,P11) s(P11,P12) s(P9,P12) s(P28,P12) s(P15,P13) s(P17,P13) s(P16,P14) s(P17,P14) s(P19,P14) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P11,P18) s(P20,P18) s(P21,P18) s(P19,P20) s(P14,P20) s(P19,P21) s(P20,P21) s(P22,P21) s(P18,P22) s(P12,P22) s(P28,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P23,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P34,P27) s(P23,P28) s(P24,P29) s(P28,P29) s(P24,P30) s(P29,P30) s(P9,P31) s(P30,P31) s(P47,P31) s(P34,P32) s(P36,P32) s(P35,P33) s(P36,P33) s(P38,P33) s(P27,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P30,P37) s(P39,P37) s(P40,P37) s(P33,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P41,P40) s(P31,P41) s(P37,P41) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P54,P46) s(P42,P47) s(P43,P48) s(P47,P48) s(P47,P49) s(P31,P49) s(P43,P50) s(P48,P50) s(P9,P51) s(P50,P51) s(P67,P51) s(P54,P52) s(P56,P52) s(P55,P53) s(P56,P53) s(P58,P53) s(P46,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P50,P57) s(P59,P57) s(P60,P57) s(P53,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P61,P60) s(P51,P61) s(P57,P61) s(P67,P61) s(P62,P63) s(P62,P64) s(P63,P64) s(P62,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P73,P66) s(P62,P67) s(P63,P68) s(P67,P68) s(P63,P69) s(P68,P69) s(P9,P70) s(P69,P70) s(P73,P71) s(P75,P71) s(P74,P72) s(P75,P72) s(P77,P72) s(P66,P74) s(P73,P74) s(P73,P75) s(P74,P75) s(P69,P76) s(P78,P76) s(P79,P76) s(P72,P78) s(P77,P78) s(P77,P79) s(P78,P79) s(P80,P79) s(P70,P80) s(P76,P80) s(P18,P100) pen(2) color(#008000) m(P7,P6,MA10) m(P6,P8,MB10) b(P6,MA10,MB10) color(#0000FF) m(P2,P1,MA11) m(P1,P6,MB11) b(P1,MA11,MB11) color(#FFA500) m(P22,P18,MA12) m(P18,P100,MB12) b(P18,MA12,MB12) pen(2) color(red) s(P22,P28) abstand(P22,P28,A0) print(abs(P22,P28):,9.01,20.417) print(A0,10.31,20.417) color(red) s(P19,P26) abstand(P19,P26,A1) print(abs(P19,P26):,9.01,20.117) print(A1,10.31,20.117) color(red) s(P100,P11) abstand(P100,P11,A2) print(abs(P100,P11):,9.01,19.817) print(A2,10.31,19.817) color(red) s(P9,P10) abstand(P9,P10,A3) print(abs(P9,P10):,9.01,19.517) print(A3,10.31,19.517) color(red) s(P9,P22) abstand(P9,P22,A4) print(abs(P9,P22):,9.01,19.217) print(A4,10.31,19.217) color(red) s(P13,P32) abstand(P13,P32,A5) print(abs(P13,P32):,9.01,18.917) print(A5,10.31,18.917) color(red) s(P27,P39) abstand(P27,P39,A6) print(abs(P27,P39):,9.01,18.617) print(A6,10.31,18.617) color(red) s(P8,P7) abstand(P8,P7,A7) print(abs(P8,P7):,9.01,18.317) print(A7,10.31,18.317) color(red) s(P7,P12) abstand(P7,P12,A8) print(abs(P7,P12):,9.01,18.017) print(A8,10.31,18.017) color(red) s(P12,P29) abstand(P12,P29,A9) print(abs(P12,P29):,9.01,17.717) print(A9,10.31,17.717) print(min=0.9999999870952139,9.01,17.417) print(max=1.0000000000000033,9.01,17.117) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.942, eingetragen 2017-04-24

http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st4-11ca824.PNG versuch... aber weit vom rekord derzeit


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.943, vom Themenstarter, eingetragen 2017-04-24

Rekord hin oder her - super wie du die Kerne zusammengebracht hast. Erinnert an einen Oktopus bzw. Pentopus.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.944, eingetragen 2017-04-24

ist ja nicht zusammen, es fehlen die beiden 0,958 verbindungen möglich das es irgendwo elastisch ist aber keineswegs sicher...


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.945, vom Themenstarter, eingetragen 2017-04-24

Noch eine intensive Füllung dieses alten 4/5ers. Vielleicht auch eine Wiederholung. \geo ebene(392.71,383.55) x(6.57,14.43) y(10,17.67) form(.) #//Eingabe war: # #Fig.16 v1 (4, 5)-regular matchstick graph with 60 vertices. #This graph is rigid. Nach Konstruktion sind P4-P45 parallel P1-P3 parallel #P7-P8 parallel P6-P46 und deshalb hat P45-P46 die Länge 1. Ebenso noch weitere #innere Kanten. # # # #P[1]=[0,0]; P[2]=[50,0]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); #M(4,1,3,blue_angle,2,60-blue_angle,2,blue_angle,2,60-blue_angle,2,60-blue_angle, #2,blue_angle,1,blue_angle,2,60-blue_angle,2,blue_angle,2,"zumachen",2,2,2); #N(45,4,3); N(46,8,6); N(47,12,10); N(48,16,14); N(49,20,18); N(50,24,22); #N(51,26,24); N(52,30,28); N(53,34,32); N(54,38,36); N(55,42,40); N(56,3,44); #A(45,46,Bew(7)); A(46,47,Bew(7)); A(47,48,Bew(7)); A(49,50,Bew(7)); #A(51,52,Bew(7)); A(52,53,Bew(7)); A(53,54,Bew(7)); A(55,56,Bew(7)); #N(57,49,48); N(58,55,54); N(58,45,56); N(59,51,50); N(60,59,57); R(60,45); #N(61,55,54); N(62,58,61); # # A(60,45); A(59,58); A(62,51); A(47,60); A(62,53); A(50,57); A(56,61); # # W(); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(9.750000000000046,10.968245836551866,P4) p(9.03647450843759,10.267616567329863,P5) p(8.786474508437637,11.235862403881729,P6) p(8.072949016875183,10.535233134659727,P7) p(8.572949016875185,11.401258538444164,P8) p(7.572949016875185,11.401258538444166,P9) p(8.072949016875187,12.267283942228604,P10) p(7.072949016875187,12.267283942228605,P11) p(7.786474508437648,12.967913211450602,P12) p(6.822949016875244,13.235529778780474,P13) p(7.536474508437704,13.93615904800247,P14) p(6.572949016875297,14.203775615332342,P15) p(7.572949016875297,14.203775615332333,P16) p(7.072949016875305,15.069801019116776,P17) p(8.072949016875304,15.069801019116767,P18) p(7.572949016875312,15.93582642290121,P19) p(8.286474508437761,15.2351971536792,P20) p(8.536474508437722,16.203442990231064,P21) p(9.25000000000017,15.502813721009057,P22) p(9.500000000000133,16.47105955756092,P23) p(10.000000000000123,15.605034153776476,P24) p(10.500000000000133,16.47105955756091,P25) p(10.750000000000073,15.502813721009039,P26) p(11.463525491562539,16.203442990231032,P27) p(11.713525491562478,15.235197153679163,P28) p(12.427050983124944,15.935826422901155,P29) p(11.927050983124936,15.06980101911672,P30) p(12.927050983124936,15.069801019116714,P31) p(12.427050983124929,14.20377561533228,P32) p(13.427050983124929,14.203775615332269,P33) p(12.713525491562468,13.503146346110274,P34) p(13.677050983124873,13.235529778780402,P35) p(12.963525491562411,12.534900509558405,P36) p(13.927050983124818,12.267283942228532,P37) p(12.927050983124818,12.26728394222852,P38) p(13.427050983124829,11.401258538444088,P39) p(12.427050983124829,11.401258538444075,P40) p(12.92705098312484,10.535233134659643,P41) p(12.213525491562416,11.235862403881676,P42) p(11.96352549156242,10.26761656732982,P43) p(11.249999999999996,10.968245836551855,P44) p(10.250000000000046,11.834271240336305,P45) p(9.286474508437639,12.101887807666166,P46) p(8.786474508437648,12.9679132114506,P47) p(8.536474508437703,13.936159048002459,P48) p(8.786474508437752,14.369171749894758,P49) p(9.750000000000162,14.63678831722461,P50) p(10.250000000000064,14.636788317224607,P51) p(11.213525491562475,14.369171749894726,P52) p(11.713525491562468,13.503146346110283,P53) p(11.963525491562411,12.534900509558394,P54) p(11.713525491562406,12.10188780766611,P55) p(10.749999999999996,11.834271240336294,P56) p(9.500000000000135,13.668542480672683,P57) p(10.50000000000004,12.80251707688816,P58) p(10.000000000000103,13.668542480672743,P59) p(9.750000000000238,12.700296644120854,P60) p(10.999999999999968,12.80251707688813,P61) p(10.750000000000064,13.770762913440008,P62) nolabel() s(P1,P2) s(P43,P2) s(P1,P3) s(P2,P3) s(P1,P4) s(P1,P5) s(P4,P5) s(P5,P6) s(P4,P6) s(P5,P7) s(P6,P7) s(P7,P8) s(P7,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P11,P12) s(P11,P13) s(P12,P13) s(P13,P14) s(P12,P14) s(P13,P15) s(P14,P15) s(P15,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P19,P21) s(P20,P21) s(P21,P22) s(P20,P22) s(P21,P23) s(P22,P23) s(P23,P24) s(P23,P25) s(P24,P25) s(P25,P26) s(P25,P27) s(P26,P27) s(P27,P28) s(P26,P28) s(P27,P29) s(P28,P29) s(P29,P30) s(P29,P31) s(P30,P31) s(P31,P32) s(P30,P32) s(P31,P33) s(P32,P33) s(P33,P34) s(P33,P35) s(P34,P35) s(P35,P36) s(P34,P36) s(P35,P37) s(P36,P37) s(P39,P37) s(P39,P38) s(P37,P38) s(P41,P39) s(P41,P40) s(P39,P40) s(P38,P40) s(P43,P42) s(P41,P42) s(P44,P42) s(P41,P43) s(P2,P44) s(P43,P44) s(P4,P45) s(P3,P45) s(P46,P45) s(P8,P46) s(P6,P46) s(P47,P46) s(P12,P47) s(P10,P47) s(P48,P47) s(P60,P47) s(P16,P48) s(P14,P48) s(P20,P49) s(P18,P49) s(P50,P49) s(P24,P50) s(P22,P50) s(P57,P50) s(P26,P51) s(P24,P51) s(P52,P51) s(P30,P52) s(P28,P52) s(P53,P52) s(P34,P53) s(P32,P53) s(P54,P53) s(P38,P54) s(P36,P54) s(P42,P55) s(P40,P55) s(P56,P55) s(P3,P56) s(P44,P56) s(P61,P56) s(P49,P57) s(P48,P57) s(P45,P58) s(P56,P58) s(P51,P59) s(P50,P59) s(P58,P59) s(P59,P60) s(P57,P60) s(P45,P60) s(P55,P61) s(P54,P61) s(P58,P62) s(P61,P62) s(P51,P62) s(P53,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P4,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P60,P45) abstand(P60,P45,A0) print(abs(P60,P45):,6.57,17.671) print(A0,7.87,17.671) print(min=0.9999999999999583,6.57,17.371) print(max=1.0000000000001428,6.57,17.071) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.946, eingetragen 2017-04-24

ich wollte die winkel im 11er kern so verändern das zwischen je zwei enden ein revers-doppelkite mit der spannweite 6.2099 passt, das ist die strecke R(13,101) oben, die wollte ich durch den vierten winkel auf p33 zielen und dann dafür sorgen das R(33-101) null wird R(39,46) soll dabei aber 1 sein.... so ungefähr war die idee komme aber mal wieder nicht so recht zurande mit dem programle... kann jemand was darin erkennen? als screenshot sieht es bei mir ungefähr so aus, also schon ganz gut http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-versuch.png als fedgeo klappt es aber diesmal gar nicht... leider: \geo ebene(337.18,283.07) x(9.2,15.94) y(10.8,16.46) form(.) #//Eingabe war: # ##918 # # # # # # #P[1]=[0,100]; P[2]=[50,100]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,1,3); #L(5,4,3); M(6,1,2,blauerWinkel); N(7,2,6); M(8,6,7,gruenerWinkel); N(9,7,8); #L(10,8,6); L(11,2,7); N(12,11,9); # #P[13]=[P[11][0]+2*(P[6][0]-P[10][0]),P[11][1]+2*(P[6][1]-P[10][1])]; # #Q(14,5,13,ab(5,2,[1,5]),D); Z(13,14); #L(13,15,17); Q(18,11,14,D,ab(5,2,[1,5])); N(22,18,12); A(21,22); # #L(23,22,12);N(24,23,9);M(25,24,23,orangerWinkel);N(26,23,25);N(27,26,25); #N(28,26,27);N(29,28,27); #N(31,25,24);N(32,31,9); # #P[33]=[P[31][0]+2*(P[23][0]-P[22][0]),P[31][1]+2*(P[23][1]-P[22][1])]; #Q(34,29,33,ab(5,2,[1,5]),D); Z(33,34); #L(33,35,37);Q(38,31,34,D,ab(5,2,[1,5]));N(42,38,32); A(41,42); # #A(9,32,ab(9,8,[1,9],[11,42])); # #R(19,28); # # # # #M(100,13,17,vierterWinkel); #P[101]=[P[13][0]+6.2099*(P[100][0]-P[13][0]), #P[13][1]+6.2099*(P[100][1]-P[13][1])]; # # #R(39,46); #R(33,101);A(101,13); # # # # # # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,12,P1) p(11,12,P2) p(10.5,12.866025403784437,P3) p(9.5,12.866025403784437,P4) p(10,13.732050807568877,P5) p(10.977880804802291,11.790837069251685,P6) p(11.977880804802291,11.790837069251687,P7) p(11.760705070261341,11.168594215207946,P8) p(12.760705070261341,11.168594215207946,P9) p(10.830414818606606,10.801769941643386,P10) p(11.67008081395919,12.7422881534578,P11) p(12.45290507941824,12.120045299414059,P12) p(9.195496391085348,15.563108956083909,P13) p(11.183491067963192,15.344300444582743,P14) p(9.597748195542675,14.647579881826394,P15) p(10.5917455219694,14.538175634893506,P16) p(10.18949372952427,15.453704700333327,P17) p(10.888559095571821,13.366166189366142,P18) p(11.96631533342224,14.722057590539006,P19) p(11.036025096505755,14.355233314777028,P20) p(11.818849347226557,13.732990462930704,P21) p(11.671383361030838,12.74392333532236,P22) p(12.602438448184268,13.10880197910097,P23) p(12.910238439027369,12.157350894894858,P24) p(12.598271798675562,13.10744395102547,P25) p(12.910238439027362,12.157350894894854,P26) p(11.931450396283156,12.36222638728222,P27) p(12.243417036634954,11.412133331151606,P28) p(11.264628993890748,11.61700882353897,P29) p(13.577059841419771,12.902568458638111,P31) p(13.427526472653742,11.913811778951201,P32) p(15.439170015726635,13.632325746195328,P33) p(14.047656341781337,12.96055343864321,P34) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P1,P4) s(P3,P4) s(P4,P5) s(P3,P5) s(P15,P5) s(P1,P6) s(P2,P7) s(P6,P7) s(P6,P8) s(P7,P9) s(P8,P9) s(P8,P10) s(P6,P10) s(P2,P11) s(P7,P11) s(P11,P12) s(P9,P12) s(P15,P13) s(P17,P13) s(P16,P14) s(P17,P14) s(P19,P14) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P11,P18) s(P20,P18) s(P21,P18) s(P19,P20) s(P14,P20) s(P19,P21) s(P20,P21) s(P22,P21) s(P18,P22) s(P12,P22) s(P22,P23) s(P12,P23) s(P23,P24) s(P9,P24) s(P24,P25) s(P23,P26) s(P25,P26) s(P26,P27) s(P25,P27) s(P26,P28) s(P27,P28) s(P28,P29) s(P27,P29) s(P25,P31) s(P24,P31) s(P31,P32) s(P9,P32) s(P29,P34) pen(2) color(#008000) m(P7,P6,MA10) m(P6,P8,MB10) b(P6,MA10,MB10) color(#0000FF) m(P2,P1,MA11) m(P1,P6,MB11) b(P1,MA11,MB11) color(#FFA500) m(P23,P24,MA12) m(P24,P25,MB12) b(P24,MA12,MB12) color(#EE82EE) m(P17,P13,MA13) m(P13,P100,MB13) f(P13,MA13,MB13) pen(2) print(min=0.9999999870952149,9.2,16.463) print(max=6.209899999999999,9.2,16.163) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.947, eingetragen 2017-04-25

http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-slash.png http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-baender.PNG


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.948, vom Themenstarter, eingetragen 2017-04-26

4/4 mit 232 EDIT: Diese Graphen sind beweglich. (siehe #958) http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_rigid_slash_graph.png Es lassen sich 4 Kanten einsparen. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_mit_228_-_Slash_neu.png


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.949, eingetragen 2017-04-26

wie dicht liegen die beiden mittleren knoten bei dem erstaunlichen endlosen 4-4er beieinander? ca. 0,025 ?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.950, vom Themenstarter, eingetragen 2017-04-26

Danke erstmal für meinen Namen. Du hast eine erste praktische Anwendung der Graphen entdeckt - als Zeichensatz. ;-) \quoteon(2017-04-26 10:44 - haribo in Beitrag No. 949) wie dicht liegen die beiden mittleren knoten bei dem erstaunlichen endlosen 4-4er beieinander? ca. 0,025 ? \quoteoff Abstand P12,P26 ca. 0,022563 und P19,P52 genau doppelt so viel. Hier mal an P15,P20 gespiegelt. \geo ebene(449.32,396.1) x(7.28,16.27) y(10.14,18.06) form(.) #//Eingabe war: # #Fig.23 v2 Infinite (4, 12)-regular matchstick graph with 2 #vertices of degree 12. This graph is flexible. # # # #D=50; P[1]=[2*D,D]; P[2]=[3*D,D]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); A(1,6,ab(6,1,[2,5],"gespiegelt")); N(12,9,3); #N(13,12,4); N(14,10,12); A(13,14,ab(13,14,[1,14],"gespiegelt")); #Q(27,19,5,ab(3,5,[1,5]),D); Q(31,11,25,D,ab(4,1,[1,5])); A(5,30); R(5,30); #A(11,33); R(11,33); R(12,26); #A(20,15,ab(20,15,[1,34],"gespiegelt")); R(19,52); Z(20,53); Z(15,53); Z(20,21); #Z(15,21); Z(15,20); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(12,11,P1) p(13,11,P2) p(12.5,11.866025403784437,P3) p(13.5,11.866025403784437,P4) p(14,11,P5) p(11.000063639175922,11.011281591283966,P6) p(11.490261674940932,10.139670505000568,P7) p(10.000318187779717,11.033843337949493,P8) p(10.519729959243968,11.888367422843814,P9) p(9.519984507847767,11.910929169509402,P10) p(9.000572736383514,11.056405084615134,P11) p(11.511440685173826,12.016858029798854,P12) p(12.511440685173826,12.016858029798854,P13) p(10.511695233777623,12.039419776464447,P14) p(12.023072279775532,13.044996214979331,P15) p(13.022817731171735,13.02243446831374,P16) p(12.50340595970748,12.167910383419484,P17) p(13.503151411103683,12.14534863675389,P18) p(14.02256318256794,12.999872721648146,P19) p(11.023135918951454,13.056277806263305,P20) p(11.532874244010525,13.916607301262733,P21) p(10.023135918951454,13.05627780626337,P22) p(10.523135918951448,12.190252402478865,P23) p(9.52313591895145,12.190252402478878,P24) p(9.023135918951454,13.05627780626332,P25) p(11.511695233777623,12.039419776464452,P26) p(14.871611086283403,11.490198035765,P27) p(15.743222172566801,11.980396071530011,P28) p(14.88289267756737,12.490134396589077,P29) p(14.011281591283971,11.999936360824066,P30) p(8.140243241384098,11.566143409674225,P31) p(8.151524832668057,12.566079770498304,P32) p(9.011854327667493,12.056341445439243,P33) p(7.279913746384663,12.075881734733287,P34) p(12.04614455955108,15.089992429958665,P35) p(13.045890010947282,15.067430683293063,P36) p(12.526478239483023,14.212906598398812,P37) p(13.526223690879224,14.190344851733212,P38) p(14.045635462343483,15.044868936627461,P39) p(11.046208198727001,15.101274021242642,P40) p(11.555946523786078,15.961603516242068,P41) p(10.046208198727001,15.101274021242716,P42) p(10.54620819872699,14.235248617458211,P43) p(9.54620819872699,14.235248617458222,P44) p(9.046208198727001,15.101274021242677,P45) p(11.534767513553163,14.084415991443782,P46) p(12.534512964949366,14.061854244778182,P47) p(10.534767513553163,14.084415991443791,P48) p(13.023072279775532,13.044996214979305,P49) p(12.523072279775539,13.911021618763767,P50) p(13.523072279775537,13.911021618763762,P51) p(14.023072279775533,13.044996214979355,P52) p(11.513333954716458,12.184666719979905,P53) p(10.023390467555249,13.078839552928857,P54) p(10.542802239019506,13.93336363782316,P55) p(9.543056787623305,13.955925384488747,P56) p(9.023645016159048,13.101401299594508,P57) p(11.534512964949366,14.061854244778186,P58) p(14.905964957342917,14.5351306115684,P59) p(15.76629445234234,14.02539228650932,P60) p(14.894683366058937,13.535194250744318,P61) p(14.034353871059512,14.044932575803397,P62) p(8.17459711244361,14.611075985477653,P63) p(8.163315521159625,13.611139624653571,P64) p(9.034926607443031,14.101337660418569,P65) p(7.3029860261602035,14.120877949712657,P66) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P30,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P6,P8) s(P6,P9) s(P8,P9) s(P8,P10) s(P9,P10) s(P8,P11) s(P10,P11) s(P33,P11) s(P9,P12) s(P3,P12) s(P12,P13) s(P4,P13) s(P18,P13) s(P26,P13) s(P10,P14) s(P12,P14) s(P24,P14) s(P26,P14) s(P15,P16) s(P15,P17) s(P16,P17) s(P16,P18) s(P17,P18) s(P16,P19) s(P18,P19) s(P29,P19) s(P30,P19) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P22,P25) s(P24,P25) s(P17,P26) s(P23,P26) s(P28,P27) s(P29,P27) s(P5,P27) s(P28,P29) s(P29,P30) s(P27,P30) s(P11,P31) s(P32,P31) s(P33,P31) s(P25,P32) s(P25,P33) s(P32,P33) s(P32,P34) s(P31,P34) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P36,P39) s(P38,P39) s(P62,P39) s(P35,P40) s(P35,P41) s(P40,P41) s(P40,P42) s(P40,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P65,P45) s(P37,P46) s(P43,P46) s(P38,P47) s(P46,P47) s(P51,P47) s(P58,P47) s(P44,P48) s(P46,P48) s(P56,P48) s(P58,P48) s(P15,P49) s(P15,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P49,P52) s(P51,P52) s(P61,P52) s(P62,P52) s(P20,P54) s(P20,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P54,P57) s(P56,P57) s(P50,P58) s(P55,P58) s(P39,P59) s(P60,P59) s(P61,P59) s(P60,P61) s(P59,P62) s(P61,P62) s(P45,P63) s(P64,P63) s(P65,P63) s(P57,P64) s(P57,P65) s(P64,P65) s(P63,P66) s(P64,P66) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P30) abstand(P5,P30,A0) print(abs(P5,P30):,7.28,18.062) print(A0,8.58,18.062) color(red) s(P11,P33) abstand(P11,P33,A1) print(abs(P11,P33):,7.28,17.762) print(A1,8.58,17.762) color(red) s(P12,P26) abstand(P12,P26,A2) print(abs(P12,P26):,7.28,17.462) print(A2,8.58,17.462) color(red) s(P19,P52) abstand(P19,P52,A3) print(abs(P19,P52):,7.28,17.162) print(A3,8.58,17.162) print(min=0.9999999999999635,7.28,16.862) print(max=1.0000000000000546,7.28,16.562) \geooff \geoprint() Mit der Kante P20,P15 lässt sich auch eine 4/5 Parkettierung bzw. Teilgraph konstruieren. Man kann natürlich noch viele weitere Varianten konstruieren. EDIT: Diese unendlichen Parkettierung sind beweglich. (siehe #958) http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_unendl_parkett_slash_b.png http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_unendl_parkett_slash_a.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.951, vom Themenstarter, eingetragen 2017-04-26

Spielerei \geo ebene(539.49,589.49) x(10.69,21.48) y(6.1,17.88) form(.) #//Eingabe war: # #Fig.22b Infinite (4, 13)-regular matchstick graph. This graph #is flexible. # # # #D=50; P[1]=[2*D,D]; P[2]=[3*D,D]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); A(1,6,ab(6,1,[2,5],"gespiegelt")); N(12,9,3); #N(13,12,4); N(14,10,12); A(13,14,ab(13,14,[1,14],"gespiegelt")); #A(19,21,ab(19,21,[1,26],"gespiegelt")); #A(7,5,ab(7,5,[1,50],"gespiegelt")); #R(33,75); R(79,28); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(12,11,P1) p(13,11,P2) p(12.5,11.866025403784437,P3) p(13.5,11.866025403784437,P4) p(14,11,P5) p(11.207332763281926,11.609654534825857,P6) p(11.075690066949386,10.618357303667462,P7) p(10.950690066949388,12.576160885771968,P8) p(11.916030467953986,12.315166805018624,P9) p(11.659387771621448,13.281673155964734,P10) p(10.69404737061685,13.542667236718076,P11) p(12.774801483155711,12.827526389148167,P12) p(13.774801483155711,12.827526389148167,P13) p(12.518158786823173,13.794032740094277,P14) p(15.085627506696957,15.011904594416588,P15) p(15.342270203029496,14.04539824347048,P16) p(14.376929802024897,14.306392324223822,P17) p(14.633572498357434,13.339885973277713,P18) p(15.598912899362034,13.07889189252437,P19) p(14.292960269978881,15.621559129242446,P20) p(15.217270203029496,16.003201825574983,P21) p(13.292960269978881,15.621559129242444,P22) p(13.792960269978883,14.755533725458005,P23) p(12.792960269978884,14.755533725458006,P24) p(12.292960269978881,15.621559129242446,P25) p(13.518158786823173,13.794032740094277,P26) p(19.61081749377862,11.993264385827409,P27) p(18.64431114283251,11.736621689494873,P28) p(18.905305223585852,12.701962090499471,P29) p(17.938798872639744,12.445319394166933,P30) p(17.677804791886402,11.479978993162335,P31) p(20.22047202860448,12.785931622545483,P32) p(20.602114724937014,11.861621689494871,P33) p(20.220472028604476,13.785931622545487,P34) p(19.35444662482004,13.285931622545485,P35) p(19.35444662482004,14.285931622545483,P36) p(20.220472028604483,14.785931622545483,P37) p(18.39294563945631,13.560733105701196,P38) p(17.4264392885102,13.304090409368657,P39) p(18.39294563945631,14.560733105701194,P40) p(15.598912899362034,15.07889189252437,P41) p(15.598912899362034,14.078891892524371,P42) p(16.46493830314647,14.57889189252437,P43) p(16.46493830314647,13.57889189252437,P44) p(16.20856743418789,15.871559129242444,P45) p(17.175073785134,16.12820182557498,P46) p(16.914079704380654,15.162861424570382,P47) p(17.880586055326766,15.419504120902921,P48) p(18.141580136080115,16.384844521907517,P49) p(17.4264392885102,14.304090409368658,P50) p(12.06698729810778,10.486714607334925,P51) p(13.033493649053892,10.743357303667462,P52) p(12.772499568300548,9.778016902662864,P53) p(13.739005919246658,10.0346595989954,P54) p(11.457332763281924,9.694047370616849,P55) p(11.457332763281926,8.694047370616849,P56) p(12.323358167066365,9.19404737061685,P57) p(12.323358167066363,8.19404737061685,P58) p(11.457332763281926,7.694047370616849,P59) p(13.284859152430094,8.919245887461141,P60) p(14.251365503376203,9.175888583793679,P61) p(13.284859152430094,7.91924588746114,P62) p(16.078891892524368,7.401087100637968,P63) p(16.07889189252437,8.401087100637966,P64) p(15.212866488739934,7.901087100637966,P65) p(15.212866488739934,8.901087100637966,P66) p(16.078891892524368,9.401087100637966,P67) p(15.469237357698514,6.608419863919892,P68) p(16.46053458885691,6.476777167587354,P69) p(14.502731006752404,6.351777167587356,P70) p(14.763725087505748,7.317117568591954,P71) p(13.797218736559635,7.060474872259415,P72) p(13.536224655806292,6.095134471254816,P73) p(14.251365503376203,8.175888583793679,P74) p(19.677804791886402,11.479978993162334,P75) p(18.6778047918864,11.479978993162337,P76) p(19.177804791886402,10.6139535893779,P77) p(18.177804791886402,10.613953589377903,P78) p(17.677804791886402,11.479978993162337,P79) p(20.47047202860448,10.870324458336478,P80) p(20.602114724937014,11.861621689494875,P81) p(20.727114724937014,9.90381810739037,P82) p(19.761774323932414,10.164812188143715,P83) p(20.018417020264955,9.198305837197609,P84) p(20.98375742126956,8.937311756444272,P85) p(18.903003308730696,9.652452604014176,P86) p(17.90300330873069,9.652452604014174,P87) p(19.15964600506323,8.685946253068064,P88) p(16.592177285189447,7.468074398745748,P89) p(16.33553458885691,8.434580749691857,P90) p(17.300874989861505,8.173586668938514,P91) p(17.044232293528967,9.140093019884626,P92) p(17.384844521907524,6.8584198639198934,P93) p(18.384844521907517,6.858419863919895,P94) p(17.884844521907517,7.724445267704333,P95) p(18.88484452190752,7.724445267704332,P96) p(19.384844521907528,6.858419863919898,P97) p(18.15964600506323,8.68594625306806,P98) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P52,P5) s(P54,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P51,P7) s(P55,P7) s(P6,P8) s(P6,P9) s(P8,P9) s(P8,P10) s(P9,P10) s(P8,P11) s(P10,P11) s(P9,P12) s(P3,P12) s(P12,P13) s(P4,P13) s(P18,P13) s(P26,P13) s(P10,P14) s(P12,P14) s(P24,P14) s(P26,P14) s(P15,P16) s(P15,P17) s(P16,P17) s(P16,P18) s(P17,P18) s(P16,P19) s(P18,P19) s(P42,P19) s(P44,P19) s(P15,P20) s(P15,P21) s(P20,P21) s(P41,P21) s(P45,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P22,P25) s(P24,P25) s(P17,P26) s(P23,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P28,P31) s(P30,P31) s(P27,P32) s(P27,P33) s(P32,P33) s(P32,P34) s(P32,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P34,P37) s(P36,P37) s(P29,P38) s(P35,P38) s(P30,P39) s(P38,P39) s(P44,P39) s(P50,P39) s(P36,P40) s(P38,P40) s(P48,P40) s(P50,P40) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P41,P45) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P46,P49) s(P48,P49) s(P43,P50) s(P47,P50) s(P51,P52) s(P51,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P51,P55) s(P55,P56) s(P55,P57) s(P56,P57) s(P56,P58) s(P57,P58) s(P56,P59) s(P58,P59) s(P53,P60) s(P57,P60) s(P54,P61) s(P60,P61) s(P66,P61) s(P74,P61) s(P58,P62) s(P60,P62) s(P72,P62) s(P74,P62) s(P63,P64) s(P63,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P64,P67) s(P66,P67) s(P90,P67) s(P92,P67) s(P63,P68) s(P63,P69) s(P68,P69) s(P89,P69) s(P93,P69) s(P68,P70) s(P68,P71) s(P70,P71) s(P70,P72) s(P71,P72) s(P70,P73) s(P72,P73) s(P65,P74) s(P71,P74) s(P75,P76) s(P75,P77) s(P76,P77) s(P76,P78) s(P77,P78) s(P76,P79) s(P78,P79) s(P75,P80) s(P75,P81) s(P80,P81) s(P80,P82) s(P80,P83) s(P82,P83) s(P82,P84) s(P83,P84) s(P82,P85) s(P84,P85) s(P77,P86) s(P83,P86) s(P78,P87) s(P86,P87) s(P92,P87) s(P98,P87) s(P84,P88) s(P86,P88) s(P96,P88) s(P98,P88) s(P89,P90) s(P89,P91) s(P90,P91) s(P90,P92) s(P91,P92) s(P89,P93) s(P93,P94) s(P93,P95) s(P94,P95) s(P94,P96) s(P95,P96) s(P94,P97) s(P96,P97) s(P91,P98) s(P95,P98) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P33,P75) abstand(P33,P75,A0) print(abs(P33,P75):,10.69,17.885) print(A0,11.99,17.885) color(red) s(P79,P28) abstand(P79,P28,A1) print(abs(P79,P28):,10.69,17.585) print(A1,11.99,17.585) print(min=0.99999999999999,10.69,17.285) print(max=1.000000000000009,10.69,16.985) \geooff \geoprint() Die unendliche 4/4-Parkettierung rechts oben ist beweglich. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_und_4_8_slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.952, vom Themenstarter, eingetragen 2017-04-26

Hier eine starre(?) unendliche 4/5-Parkettierung. Wenn man die Mittelkanten, die den Graphen zum 4/5 machen entfernt, wird es eine bewegliche 4/4-Parkettierung. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_5_unend_park_slash_a.png Detail von oben. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_5_unend_park_slash_b.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.953, vom Themenstarter, eingetragen 2017-04-27

Habe ihn noch nicht eingegeben. Wäre ein 4/4 mit 136, wenn sich die beiden Knoten auf die senkrechte Strecke bringen lassen. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_mit_136_test_-_slash_b.png


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4514
  Beitrag No.954, eingetragen 2017-04-27

üben üben üben... d.h. innerhalb einer stunde ist es mir nicht gelungen deinen graphen einzugeben, nicht mal die hälfte... durch erfahrenes betrachten sage ich folgendes: beide ecken einzeln bekommt man sicher auf die linie... beide gleichzeitig eher unwarscheinlich haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.955, vom Themenstarter, eingetragen 2017-04-27

So, hier mein Versuch des #948-2. Ich habe es aber nicht geschafft, dass sich die Winkel grün und gelb automatisch richtig einstellen. Hier muss Stefan wieder helfen. \geo ebene(656.91,570.23) x(5.21,16.16) y(10.14,19.64) form(.) #//Eingabe war: # #Fig.22a Infinite (4, 12)-regular matchstick graph. This graph #is flexible. # # # # # #D=60; P[1]=[2*D,D]; P[2]=[3*D,D]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); A(1,6,ab(6,1,[2,5],"gespiegelt")); N(12,9,3); #N(13,12,4); N(14,10,12); A(13,14,ab(13,14,[1,14],"gespiegelt")); #Q(27,19,5,ab(3,5,[1,5]),D); Q(31,11,25,D,ab(4,1,[1,5])); #A(5,30); R(5,30); A(11,33); R(11,33); #M(35,34,32,green_angle,2); L(39,37,35); #Q(40,38,39,ab(39,34,[34,39]),ab(1,2,3)); #A(44,45,ab(44,45,[34,45],"gespiegelt")); #M(56,46,47,orange_angle,2); L(60,58,56); #Q(61,59,60,ab(60,46,[56,60]),ab(1,2,3)); #A(65,66,ab(65,66,[56,66],"gespiegelt")); R(67,20); R(68,15); A(67,20); #A(68,15); # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(12,11,P1) p(13,11,P2) p(12.5,11.86602540378444,P3) p(13.5,11.86602540378444,P4) p(14,11,P5) p(11.000063639013025,11.011281576845617,P6) p(11.49026168736346,10.13967049764032,P7) p(10.000318186965272,11.033843294640043,P8) p(10.519729933752116,11.88836739453413,P9) p(9.519984481704364,11.910929112328535,P10) p(9.000572734917519,11.05640501243443,P11) p(11.511440669404692,12.016857926447678,P12) p(12.511440669404692,12.016857926447678,P13) p(10.51169521735694,12.039419644242084,P14) p(12.023072247748612,13.044995993844143,P15) p(13.022817699796365,13.022434276049736,P16) p(12.503405953009516,12.16791017615563,P17) p(13.503151405057269,12.145348458361221,P18) p(14.022563151844118,12.999872558255328,P19) p(11.023135886761635,13.056277570689765,P20) p(11.53287419939818,13.916607073049443,P21) p(10.023135886761635,13.056277570689748,P22) p(10.523135886761631,12.190252166905326,P23) p(9.523135886761633,12.190252166905335,P24) p(9.023135886761635,13.056277570689769,P25) p(11.51169521735694,12.039419644242091,P26) p(14.87161114871219,11.490197924761635,P27) p(15.743222204748523,11.98039601430833,P28) p(14.88289267829632,12.49013428628183,P29) p(14.011281622259988,11.999936196735135,P30) p(8.140243160280269,11.566143203081834,P31) p(8.151524784387377,12.566079563535592,P32) p(9.011854262654529,12.056341210236011,P33) p(7.279913682013115,12.075881556381413,P34) p(7.488105379113115,13.053969598051804,P35) p(6.536960439338784,12.745224875762204,P36) p(6.745152136438785,13.723312917432596,P37) p(5.794007196664453,13.414568195142996,P38) p(7.696297076213115,14.032057639722197,P39) p(7.15957004935527,14.875813587043655,P40) p(6.4767886230098615,14.145190891093325,P41) p(5.502660094562697,14.37118560356546,P42) p(6.185441520908106,15.101808299515788,P43) p(5.211312992460942,15.327803011987921,P44) p(8.158647647758784,14.918754853539514,P45) p(8.087314213451178,17.89348400211751,P46) p(8.02127834050372,16.895666752575256,P47) p(7.190161190539541,17.451764120879965,P48) p(7.124125317592082,16.45394687133771,P49) p(6.293008167627905,17.01004423964242,P50) p(7.95524246755626,15.897849503033003,P51) p(7.209024218486739,15.232148124969523,P52) p(6.751016193057321,16.12109618230597,P53) p(5.752160580044421,16.168923625815168,P54) p(6.21016860547384,15.279975568478722,P55) p(8.448835737345192,16.96112023847086,P56) p(9.075525680284255,17.740388944001264,P57) p(9.437047204178269,16.808025180354612,P58) p(10.063737147117331,17.587293885885018,P59) p(8.810357261239208,16.028756474824206,P60) p(9.721553426658941,15.616783723147142,P61) p(9.892645286888136,16.60203880451608,P62) p(10.831447146675938,16.94649644786133,P63) p(10.660355286446743,15.961241366492391,P64) p(11.599157146234544,16.30569900983764,P65) p(8.909176475329756,15.033651071901218,P66) p(10.10688394534346,13.454870593367797,P67) p(11.106833367318487,13.444813084142833,P68) p(10.61556871481859,14.315823440685254,P69) p(11.615518136793616,14.305765931460286,P70) p(9.615619292843563,14.32588094991022,P71) p(9.875344789770477,15.29156343719373,P72) p(10.745431463282046,14.798664684327008,P73) p(11.607337641514079,15.305732470648964,P74) p(10.737250968002511,15.798631223515684,P75) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P30,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P6,P8) s(P6,P9) s(P8,P9) s(P8,P10) s(P9,P10) s(P8,P11) s(P10,P11) s(P33,P11) s(P9,P12) s(P3,P12) s(P12,P13) s(P4,P13) s(P18,P13) s(P26,P13) s(P10,P14) s(P12,P14) s(P24,P14) s(P26,P14) s(P15,P16) s(P15,P17) s(P16,P17) s(P16,P18) s(P17,P18) s(P16,P19) s(P18,P19) s(P29,P19) s(P30,P19) s(P15,P20) s(P15,P21) s(P20,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P22,P25) s(P24,P25) s(P17,P26) s(P23,P26) s(P28,P27) s(P29,P27) s(P5,P27) s(P28,P29) s(P29,P30) s(P27,P30) s(P11,P31) s(P32,P31) s(P33,P31) s(P25,P32) s(P25,P33) s(P32,P33) s(P32,P34) s(P31,P34) s(P34,P35) s(P34,P36) s(P35,P36) s(P36,P37) s(P35,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P35,P39) s(P40,P39) s(P41,P40) s(P43,P40) s(P38,P41) s(P38,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P54,P44) s(P55,P44) s(P40,P45) s(P39,P45) s(P51,P45) s(P52,P45) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P47,P51) s(P49,P51) s(P52,P51) s(P53,P52) s(P55,P52) s(P50,P53) s(P50,P54) s(P53,P54) s(P53,P55) s(P54,P55) s(P46,P56) s(P46,P57) s(P56,P57) s(P57,P58) s(P56,P58) s(P57,P59) s(P58,P59) s(P58,P60) s(P56,P60) s(P61,P60) s(P62,P61) s(P64,P61) s(P59,P62) s(P59,P63) s(P62,P63) s(P62,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P74,P65) s(P75,P65) s(P61,P66) s(P60,P66) s(P71,P66) s(P72,P66) s(P20,P67) s(P67,P68) s(P15,P68) s(P67,P69) s(P68,P69) s(P68,P70) s(P69,P70) s(P67,P71) s(P69,P71) s(P72,P71) s(P73,P72) s(P75,P72) s(P70,P73) s(P70,P74) s(P73,P74) s(P73,P75) s(P74,P75) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) color(#008000) m(P32,P34,MA11) m(P34,P35,MB11) b(P34,MA11,MB11) color(#FFA500) m(P47,P46,MA12) m(P46,P56,MB12) f(P46,MA12,MB12) pen(2) color(red) s(P5,P30) abstand(P5,P30,A0) print(abs(P5,P30):,5.21,19.643) print(A0,6.29,19.643) color(red) s(P11,P33) abstand(P11,P33,A1) print(abs(P11,P33):,5.21,19.393) print(A1,6.29,19.393) color(red) s(P67,P20) abstand(P67,P20,A2) print(abs(P67,P20):,5.21,19.143) print(A2,6.29,19.143) color(red) s(P68,P15) abstand(P68,P15,A3) print(abs(P68,P15):,5.21,18.893) print(A3,6.29,18.893) print(min=0.9991966417942652,5.21,18.643) print(max=1.0000000129047846,5.21,18.393) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.956, vom Themenstarter, eingetragen 2017-04-28

EDIT: Diese Graphen sind beweglich. (siehe #958) Dieser Beitrag ist daher unwichtig. Um wieviele Kanten lässt sich der #934-1 reduzieren ohne dass seine Starrheit verloren geht? Sind diese (2,3,4)-Varianten immer noch starr? http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_2_3_4_starrheit_-_Slash.png Die Antwort lautet wohl ja. Aber ich bin mir nicht ganz sicher, ob die Spiegelungen im Programm nicht nur eine Starrheit vortäuschen. Lasse ich hier P17, P18 und P19 weg ist er immer noch starr, obwohl das in der Realität nicht stimmt. \geo ebene(561.29,328.22) x(9.12,14.73) y(9.49,12.77) form(.) #//Eingabe war: # #Fig.6 (3, 4)-regular matchstick graph with 20 vertices and 35 edges. This graph is rigid. # # # #P[1]=[0,0]; P[2]=[100,0]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,3,2); #L(5,4,2); M(6,1,3,blue_angle,1); #Z(1,7); Z(6,7); #L(8,6,1); L(9,6,8); L(10,9,8); A(1,10,ab(10,1,[1,4],"gespiegelt"),Bew(2)); #N(14,12,3); N(15,14,4); N(16,13,14); N(17,16,15); #A(15,16,ab(15,16,[2,5],"gespiegelt"),Bew(2)); #A(17,19); A(5,21); R(5,21); R(15,16); # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(9.1283889137166,10.490198035765008,P6) p(9.13967050500057,9.49026167494093,P7) p(9.98871840871603,10.999936360824078,P8) p(9.11710732243263,11.490134396589086,P9) p(9.97743681743206,11.999872721648156,P10) p(10.977182268828264,12.022434468313751,P11) p(10.496848588896317,11.145348636753901,P12) p(11.49659404029252,11.167910383419496,P13) p(11.488559314826174,11.01685802979886,P14) p(12.488559314826174,11.016858029798858,P15) p(12.488304766222377,11.039419776464456,P16) p(13.488304766222377,11.039419776464452,P17) p(13.999681812220285,10.03384333794956,P18) p(14.480015492152233,10.91092916950941,P19) p(13.480270040756032,10.888367422843817,P20) p(12.999936360824082,10.011281591283968,P21) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P21,P5) s(P1,P6) s(P6,P8) s(P1,P8) s(P6,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P10,P11) s(P10,P12) s(P11,P12) s(P11,P13) s(P12,P13) s(P12,P14) s(P3,P14) s(P14,P15) s(P4,P15) s(P20,P15) s(P13,P16) s(P14,P16) s(P16,P17) s(P15,P17) s(P19,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P18,P21) s(P20,P21) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) pen(2) color(red) s(P5,P21) abstand(P5,P21,A0) print(abs(P5,P21):,9.12,12.772) print(A0,9.77,12.772) color(red) s(P15,P16) abstand(P15,P16,A1) print(abs(P15,P16):,9.12,12.622) print(A1,9.77,12.622) print(min=0.9999999999999996,9.12,12.472) print(max=1.000000000000003,9.12,12.322) \geooff \geoprint() Rigid (3, 4)-regular matchstick graph with 20 vertices and 35 edges, 10×degree 3, 10×degree 4. Nach reiflicher Überlegung bin ich jetzt ziemlich sicher, dass dies der minimalste starre Teilgraph ist. Wird eine Kante entfernt, dann wird er beweglich. Existiert noch ein extremerer starrer Streichholzgraph mit kleineren Winkeln und Abständen als 1,29° und 0.02256318256793? Hier die Auflistung nach minimaler Kantenanzahl und Knotengraden. Danach kommt der 4-reg mit 228 Kanten. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_minimal_3_4_2_4_2_4_sym_-_slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.957, vom Themenstarter, eingetragen 2017-04-29

EDIT: Dieser Graph ist beweglich. (siehe #958) Hier noch eine Variante des minimal starren Extrem-Graphen mit 5er-Knoten. Winkel und Abstand sind aber etwas größer, also kein neuer Rekord. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_3_4_5_rigid_min_-_slash.png


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.958, eingetragen 2017-04-29

\quoteon(2017-04-24 02:43 - StefanVogel in Beitrag No. 935) ...Erst wenn mit dem extra GAP-Programm die Beweglichkeit bestimmt werden soll... \quoteoff Hätte ich das doch gleich gemacht. Aber bei diesem "Mini"-Graph habe ich mich auch wieder darauf verlassen, dass nach der Eingabe keine Bewegungsmöglichkeit mehr zu sehen ist. \quoteon(2017-04-28 03:58 - Slash in Beitrag No. 956) Aber ich bin mir nicht ganz sicher, ob die Spiegelungen im Programm nicht nur eine Starrheit vortäuschen. \quoteoff Genau so ist es, der alte Fehler, dass die verwendete Eingabe nur die symmetrischen Varianten zulässt. Das extra GAP-Programm sagt aber "einfach beweglich" und es ist auch nicht leicht, diese Bewegungsmöglichkeit zu finden, denn beide Buttons "neue Eingabe" sind nicht verwendbar. Da bleibt nur, alles nochmal ohne Spiegeln eingeben, und da wird dann die Bewegungsmöglichkeit sichtbar, siehe Animation "Demo". Der Abstand P3-P26 ist keine Kante sondern soll nur mit einem Wert größer 1 bestätigen, dass in der Mitte keine Überschneidung auftritt. \geo ebene(702.05,392.12) x(7.28,16.06) y(10.15,15.05) form(.) #//Eingabe war: # ##934-1m # # # # #D=80; P[1]=[2*D,D]; P[2]=[3*D,D]; A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); #M(6,1,3,blue_angle,1); L(7,1,6); M(9,6,1,gruenerWinkel); L(8,6,9); L(10,8,9); #L(11,8,10); N(12,9,3); N(13,12,4); N(14,10,12); A(13,14,ab(14,13,[1,14])); #Q(27,25,5,ab(3,5,[1,5]),D); Q(31,11,19,D,ab(4,1,[1,5])); A(5,30); R(5,30); #R(3,26); A(11,33); R(11,33); # # # # # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(12,11,P1) p(13,11,P2) p(12.5,11.86602540378444,P3) p(13.5,11.86602540378444,P4) p(14,11,P5) p(11.000253680457202,11.022523244895643,P6) p(11.480621137973316,10.145455912383763,P7) p(10.000507360914403,11.045046489791286,P8) p(10.519886222941087,11.899590577407523,P9) p(9.52013990339829,11.922113822303164,P10) p(9.000761041371605,11.067569734686927,P11) p(11.512310214501511,12.022450745791247,P12) p(12.512310214501511,12.022450745791248,P13) p(10.512563894958712,12.044973990686895,P14) p(11.024874109460223,13.067424736478143,P15) p(10.024874109460221,13.067424736478142,P16) p(10.524874109460223,12.201399332693704,P17) p(9.524874109460221,12.20139933269369,P18) p(9.024874109460221,13.067424736478142,P19) p(12.02462042900302,13.0449014915825,P20) p(11.544252971486905,13.92196882409438,P21) p(13.024366748545818,13.02237824668686,P22) p(12.504987886519135,12.167834159070622,P23) p(13.504734206061933,12.145310914174978,P24) p(14.024113068088617,12.999855001791214,P25) p(11.512563894958712,12.044973990686898,P26) p(14.871990569092546,11.48952267303329,P27) p(15.743981345666727,11.979044976477736,P28) p(14.884047206877673,12.489449989134476,P29) p(14.01205643030349,11.99992768569003,P30) p(8.140827010748843,11.577974929582993,P31) p(8.152883436626858,12.577902248239228,P32) p(9.012817683582208,12.067497417821908,P33) p(7.280892763793494,12.088379760000315,P34) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P30,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P6,P8) s(P9,P8) s(P6,P9) s(P8,P10) s(P9,P10) s(P8,P11) s(P10,P11) s(P33,P11) s(P9,P12) s(P3,P12) s(P12,P13) s(P4,P13) s(P24,P13) s(P26,P13) s(P10,P14) s(P12,P14) s(P18,P14) s(P26,P14) s(P15,P16) s(P15,P17) s(P16,P17) s(P16,P18) s(P17,P18) s(P16,P19) s(P18,P19) s(P15,P20) s(P15,P21) s(P20,P21) s(P20,P22) s(P23,P22) s(P20,P23) s(P22,P24) s(P23,P24) s(P22,P25) s(P24,P25) s(P29,P25) s(P30,P25) s(P17,P26) s(P23,P26) s(P28,P27) s(P29,P27) s(P5,P27) s(P28,P29) s(P29,P30) s(P27,P30) s(P11,P31) s(P32,P31) s(P33,P31) s(P19,P32) s(P19,P33) s(P32,P33) s(P32,P34) s(P31,P34) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) color(#008000) m(P1,P6,MA11) m(P6,P9,MB11) b(P6,MA11,MB11) pen(2) color(red) s(P5,P30) abstand(P5,P30,A0) print(abs(P5,P30):,7.28,15.047) print(A0,8.09,15.047) color(red) s(P3,P26) abstand(P3,P26,A1) print(abs(P3,P26):,7.28,14.859) print(A1,8.09,14.859) color(red) s(P11,P33) abstand(P11,P33,A2) print(abs(P11,P33):,7.28,14.672) print(A2,8.09,14.672) print(min=0.999999999999997,7.28,14.484) print(max=1.0000000000000033,7.28,14.297) \geooff \geoprint() Das bringt all das zu diesem Graph Geschriebene wieder durcheinander. \quoteon(2017-04-24 12:34 - haribo in Beitrag No. 941) hallo stefan, habe ich die möglichkeit mir weitere winkel anzeigen zu lassen? also beispielsweise: winkel 10-9-22 erstmal einfach nur anzeigen... raus-messen sozusagen grus haribo \quoteoff Die Stelle "Winkel(1,2,3)=60°" über dem großen Eingabefenster ist der Winkelmesser. Anstelle 1,2,3 kann man andere Punktnummern i,j,k eingeben und dann wird der betreffende Winkel von Pi über Pj nach Pk angezeigt. Zu #942: Weil mehrere Außendreiecke wegfallen, gewinnt der Graph ausreichende Beweglichkeit, um auch die Kante 0,958 einzustellen. Ich habe eine eigene Eingabevariante verwendet, erstmal um zu sehen, ob es überhaupt geht. \geo ebene(549.21,578.74) x(5.92,18.94) y(9.19,22.91) form(.) #//Eingabe war: # ##942 §Abstand P18-P29 ist keine Kante sondern soll nur bestätigen, #dass die schmale Raute von P19 nach P22 vorhanden ist.§ # # # # # # #P[1]=[15.29,214.09]; P[2]=[50.16,237.86]; D=ab(1,2); A(2,1); #M(3,1,2,gruenerWinkel); N(4,3,2); L(5,3,4); #M(6,1,3,blauerWinkel); N(7,6,3); N(8,7,5); L(9,8,5); L(10,8,9); L(11,10,9); #L(12,6,7); #Q(13,12,10,ab(11,5,8,9,10),D); L(17,16,13); #N(18,6,14); N(19,1,18); L(20,19,18); #Q(21,20,17,ab(11,5,[8,10]),ab(5,11,[8,10])); L(28,25,27); #N(29,19,22); N(30,1,29); L(31,30,29); #Q(32,31,24,ab(13,12,[14,17]),D); #N(37,30,33); N(38,1,37); L(39,38,37); # #M(40,39,37,orangerWinkel); L(41,39,40); L(42,41,40); L(43,42,40); N(44,38,41); #N(45,1,44); L(46,45,44); Q(47,46,42,ab(13,12,[14,17]),D); N(52,45,48); #N(53,1,52); L(54,53,52); M(55,54,52,vierterWinkel); L(56,54,55); N(57,53,56); #N(58,1,57); L(59,1,58); L(60,4,2); # #A(60,11,ab(60,11,[1,60],"gespiegelt")); N(119,62,2); A(119,59); R(119,59); #A(119,118); N(120,118,59); N(121,120,58); N(122,117,120); N(123,122,121); #N(124,116,122); N(125,121,57); N(126,123,125); N(127,124,123); L(128,56,55); #L(129,128,55); L(130,128,129); L(131,130,129); L(132,130,131); L(133,132,131); #L(134,126,125); L(135,126,134); L(136,135,134); L(137,135,136); L(138,137,136); #L(139,137,138); A(138,132); R(138,132); R(36,43); R(18,29); L(140,124,127); #L(141,140,127); L(142,140,141); L(143,142,141); L(144,142,143); L(145,144,143); #L(147,114,115); L(148,114,147); L(149,148,147); L(150,148,149); L(151,150,149); #L(152,150,151); L(153,152,151); # # # # # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10.362313140060357,15.073094843395797,P1) p(11.188595624946206,15.636350784483742,P2) p(10.725055861907247,16.00498417038002,P3) p(11.551338346793097,16.568240111467965,P4) p(10.650403150535501,17.00219376353727,P5) p(10.049327467622119,16.02285269087503,P6) p(10.412070189469011,16.954742017859253,P7) p(10.337417478097263,17.9519516110165,P8) p(11.316424737677023,17.748126230628955,P9) p(11.003439065238787,18.69788407810819,P10) p(11.982446324818547,18.49405869772064,P11) p(9.423658997861645,16.802941766524462,P12) p(10.003621911542536,18.71700629489198,P13) p(8.739835473257392,17.53258920686659,P14) p(9.713640474870036,17.75997402459732,P15) p(9.029816930097837,18.48962147105035,P16) p(9.319798386938283,19.446653735234108,P17) p(9.365503943017876,16.752500131217165,P18) p(9.678489615456114,15.802742283737933,P19) p(8.699482355876354,16.00656766412548,P20) p(8.05282969875258,17.8991427197137,P21) p(7.718310153241338,16.199702613775585,P22) p(8.376156047255986,16.952855198733182,P23) p(7.39498382467945,17.145990141569698,P24) p(7.699479944760544,18.834634008477934,P25) p(8.686314042845432,18.672898227473908,P26) p(8.332964288853395,19.60838951623814,P27) p(7.3461301907685055,19.77012529724217,P28) p(8.697317412821086,15.99587723338798,P29) p(9.381140937425327,15.266229793045841,P30) p(8.407335955980626,15.038844969204224,P31) p(6.8573645126955896,16.302802454644656,P32) p(7.472533449311909,14.683677018051696,P33) p(7.632350247656063,15.670823728256044,P34) p(6.69754772766939,15.315655760771914,P35) p(5.922562006026873,15.94763450349213,P36) p(8.446338430756608,14.911061841893321,P37) p(9.427510633391638,14.717926892243275,P38) p(8.769664759318555,13.96477431409923,P39) p(7.779729316813148,14.106293993549205,P40) p(8.152137400526744,13.178224912507945,P41) p(7.1622019580213365,13.319744591957917,P42) p(6.78979387430774,14.247813672999177,P43) p(8.809983274599837,13.93137749065198,P44) p(9.744785781268556,14.286545441804503,P45) p(9.584968996242353,13.299398747931761,P46) p(7.747736476186737,12.509097117381692,P47) p(9.467871510582759,12.30627832278071,P48) p(8.666352727887364,12.904247952015115,P49) p(8.549255250554952,11.911127507505675,P50) p(7.630638990527144,11.515976692230643,P51) p(9.62768829560893,13.293425016653458,P52) p(10.245215654400733,14.079974418244753,P53) p(10.61762373811434,13.151905337203496,P54) p(10.109994434393412,12.290329751428338,P55) p(11.10995543081562,12.281497671588188,P56) p(10.737547347102012,13.209566752629442,P57) p(10.854644832761636,14.202687177780488,P58) p(11.362274136482565,15.064262763555643,P59) p(12.177006816553572,15.788151035818533,P60) p(14.075332608944798,15.340068807015854,P61) p(13.17696781297578,15.77931895597831,P62) p(13.583000916243583,16.2104764726312,P63) p(12.684636120274561,16.649726621593654,P64) p(13.514220305876657,17.20810828228722,P65) p(14.249221977566517,16.324834001100385,P66) p(13.7568902848653,17.195241666715724,P67) p(13.688109674498376,18.19287347637175,P68) p(12.748333315347601,17.85108349000393,P69) p(12.92222268396932,18.835848684088457,P70) p(14.756851281287508,17.186409586875506,P71) p(13.90901935814305,18.997812642547313,P72) p(15.329253831853666,18.006382342584715,P73) p(14.332935300629046,18.09211110577805,P74) p(14.905337870281437,18.91208387042062,P75) p(14.481421908709208,19.817785398256525,P76) p(14.821624528132666,17.1448067568096,P77) p(14.647735159510948,16.16004156272507,P78) p(15.58751151866172,16.50183154909289,P79) p(15.956751786595822,18.46745145755331,P80) p(16.530959973100828,16.833350800142444,P81) p(15.772131631917603,17.484641507213677,P82) p(16.71558010706788,17.816160754372653,P83) p(16.172631065244836,19.44387151933512,P84) p(15.219086847652516,19.142618427904917,P85) p(15.434966126301527,20.119038489686723,P86) p(16.388510343893845,20.42029158111692,P87) p(15.591183613950077,16.491560813774566,P88) p(15.01878106338393,15.671588058065346,P89) p(16.01509957552232,15.585859285938668,P90) p(17.368299430964136,17.058560936386655,P91) p(16.99109806012439,15.368081972945644,P92) p(16.691699487725792,16.322210125420938,P93) p(17.667697987845298,16.10443279816964,P94) p(18.34429791556621,16.840783623393634,P95) p(15.994779547986003,15.453810745072328,P96) p(15.051331093546871,15.122291494022834,P97) p(15.810159414018887,14.47100079084213,P98) p(16.76966528215698,14.752689429250871,P99) p(16.53386186490735,13.780888653158671,P100) p(17.493367733045446,14.062577291567413,P101) p(17.729171150295066,15.034378067659613,P102) p(15.775033544435328,14.432179356339368,P103) p(14.799035059833255,14.649956669332386,P104) p(15.09843361671442,13.695828531115367,P105) p(17.02983136232761,13.176499398252307,P106) p(15.35640694212534,12.729676491643094,P107) p(16.064132494993036,13.43616398503442,P108) p(16.322105814931938,12.470011925211564,P109) p(17.28780468773853,12.210347358780032,P110) p(15.057008385244206,13.68380462986012,P111) p(14.33330593435575,14.373916767543587,P112) p(14.097502517106115,13.402115991451394,P113) p(14.72317098686653,12.622026915801912,P114) p(13.734759795259151,12.470226664467196,P115) p(13.970563212508791,13.442027440559391,P116) p(13.712589887097842,14.408179480031656,P117) p(13.086921417337424,15.188268555681132,P118) p(12.188556621368415,15.627518704643514,P119) p(12.260638932451581,14.625012614593178,P120) p(11.753009628730652,13.763437028818021,P121) p(12.886307402212,13.844923538943702,P122) p(12.37867809849107,12.983347953168543,P123) p(13.144280727622949,12.878771499471437,P124) p(11.635912143071028,12.770316603666977,P125) p(12.261580612831446,11.990227528017499,P126) p(12.63665142390202,12.01719591369628,P127) p(10.602326127094694,11.41992208581303,P128) p(9.602365130672485,11.42875416565318,P129) p(10.094696823373766,10.558346500037873,P130) p(9.094735826951558,10.567178579878021,P131) p(9.587067519652841,9.696770914262714,P132) p(8.58710652323063,9.705602994102865,P133) p(11.27316942122407,11.83842727668278,P134) p(11.898837890984487,11.058338201033303,P135) p(10.91042669937711,10.906537949698583,P136) p(11.536095169137527,10.126448874049107,P137) p(10.54768397753015,9.974648622714389,P138) p(11.173352447290569,9.19455954706491,P139) p(13.63661242032423,12.008363833856126,P140) p(13.128983116603301,11.146788248080972,P141) p(14.128944113025508,11.137956168240818,P142) p(13.621314809304579,10.276380582465663,P143) p(14.621275805726789,10.267548502625509,P144) p(14.11364650200586,9.405972916850352,P145) p(14.360428265019568,11.690137588817716,P147) p(15.348839456626946,11.841937840152434,P148) p(14.986096734779984,10.910048513168238,P149) p(15.974507926387364,11.061848764502956,P150) p(15.611765204540403,10.12995943751876,P151) p(16.60017639614778,10.281759688853477,P152) p(16.237433674300817,9.34987036186928,P153) nolabel() s(P1,P2) s(P1,P3) s(P3,P4) s(P2,P4) s(P3,P5) s(P4,P5) s(P1,P6) s(P6,P7) s(P3,P7) s(P7,P8) s(P5,P8) s(P8,P9) s(P5,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P69,P11) s(P70,P11) s(P6,P12) s(P7,P12) s(P15,P13) s(P16,P13) s(P10,P13) s(P12,P14) s(P12,P15) s(P14,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P13,P17) s(P26,P17) s(P27,P17) s(P6,P18) s(P14,P18) s(P1,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P23,P21) s(P24,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P21,P25) s(P21,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P19,P29) s(P22,P29) s(P1,P30) s(P29,P30) s(P30,P31) s(P29,P31) s(P34,P32) s(P35,P32) s(P24,P32) s(P31,P33) s(P31,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P35,P36) s(P30,P37) s(P33,P37) s(P1,P38) s(P37,P38) s(P38,P39) s(P37,P39) s(P39,P40) s(P39,P41) s(P40,P41) s(P41,P42) s(P40,P42) s(P42,P43) s(P40,P43) s(P38,P44) s(P41,P44) s(P1,P45) s(P44,P45) s(P45,P46) s(P44,P46) s(P49,P47) s(P50,P47) s(P42,P47) s(P46,P48) s(P46,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P47,P51) s(P50,P51) s(P45,P52) s(P48,P52) s(P1,P53) s(P52,P53) s(P53,P54) s(P52,P54) s(P54,P55) s(P54,P56) s(P55,P56) s(P53,P57) s(P56,P57) s(P1,P58) s(P57,P58) s(P1,P59) s(P58,P59) s(P4,P60) s(P2,P60) s(P62,P60) s(P64,P60) s(P61,P62) s(P61,P63) s(P62,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P61,P66) s(P63,P67) s(P66,P67) s(P65,P68) s(P67,P68) s(P65,P69) s(P68,P69) s(P68,P70) s(P69,P70) s(P66,P71) s(P67,P71) s(P70,P72) s(P74,P72) s(P75,P72) s(P71,P73) s(P71,P74) s(P73,P74) s(P73,P75) s(P74,P75) s(P72,P76) s(P75,P76) s(P85,P76) s(P86,P76) s(P66,P77) s(P73,P77) s(P61,P78) s(P77,P78) s(P77,P79) s(P78,P79) s(P82,P80) s(P83,P80) s(P79,P81) s(P79,P82) s(P81,P82) s(P81,P83) s(P82,P83) s(P80,P84) s(P80,P85) s(P84,P85) s(P84,P86) s(P85,P86) s(P84,P87) s(P86,P87) s(P78,P88) s(P81,P88) s(P61,P89) s(P88,P89) s(P88,P90) s(P89,P90) s(P83,P91) s(P93,P91) s(P94,P91) s(P90,P92) s(P90,P93) s(P92,P93) s(P92,P94) s(P93,P94) s(P91,P95) s(P94,P95) s(P89,P96) s(P92,P96) s(P61,P97) s(P96,P97) s(P96,P98) s(P97,P98) s(P98,P99) s(P98,P100) s(P99,P100) s(P99,P101) s(P100,P101) s(P99,P102) s(P101,P102) s(P97,P103) s(P100,P103) s(P61,P104) s(P103,P104) s(P103,P105) s(P104,P105) s(P101,P106) s(P108,P106) s(P109,P106) s(P105,P107) s(P105,P108) s(P107,P108) s(P107,P109) s(P108,P109) s(P106,P110) s(P109,P110) s(P104,P111) s(P107,P111) s(P61,P112) s(P111,P112) s(P111,P113) s(P112,P113) s(P113,P114) s(P113,P115) s(P114,P115) s(P112,P116) s(P115,P116) s(P61,P117) s(P116,P117) s(P61,P118) s(P117,P118) s(P62,P119) s(P2,P119) s(P59,P119) s(P118,P119) s(P118,P120) s(P59,P120) s(P120,P121) s(P58,P121) s(P117,P122) s(P120,P122) s(P122,P123) s(P121,P123) s(P116,P124) s(P122,P124) s(P121,P125) s(P57,P125) s(P123,P126) s(P125,P126) s(P124,P127) s(P123,P127) s(P56,P128) s(P55,P128) s(P128,P129) s(P55,P129) s(P128,P130) s(P129,P130) s(P130,P131) s(P129,P131) s(P130,P132) s(P131,P132) s(P132,P133) s(P131,P133) s(P126,P134) s(P125,P134) s(P126,P135) s(P134,P135) s(P135,P136) s(P134,P136) s(P135,P137) s(P136,P137) s(P137,P138) s(P136,P138) s(P132,P138) s(P137,P139) s(P138,P139) s(P124,P140) s(P127,P140) s(P140,P141) s(P127,P141) s(P140,P142) s(P141,P142) s(P142,P143) s(P141,P143) s(P142,P144) s(P143,P144) s(P144,P145) s(P143,P145) s(P114,P147) s(P115,P147) s(P114,P148) s(P147,P148) s(P148,P149) s(P147,P149) s(P148,P150) s(P149,P150) s(P150,P151) s(P149,P151) s(P150,P152) s(P151,P152) s(P152,P153) s(P151,P153) pen(2) color(#EE82EE) m(P52,P54,MA10) m(P54,P55,MB10) b(P54,MA10,MB10) color(#0000FF) m(P3,P1,MA11) m(P1,P6,MB11) b(P1,MA11,MB11) color(#FFA500) m(P37,P39,MA12) m(P39,P40,MB12) b(P39,MA12,MB12) color(#008000) m(P2,P1,MA13) m(P1,P3,MB13) b(P1,MA13,MB13) pen(2) color(red) s(P119,P59) abstand(P119,P59,A0) print(abs(P119,P59):,5.92,22.908) print(A0,7.46,22.908) color(red) s(P138,P132) abstand(P138,P132,A1) print(abs(P138,P132):,5.92,22.553) print(A1,7.46,22.553) color(red) s(P36,P43) abstand(P36,P43,A2) print(abs(P36,P43):,5.92,22.197) print(A2,7.46,22.197) color(red) s(P18,P29) abstand(P18,P29,A3) print(abs(P18,P29):,5.92,21.842) print(A3,7.46,21.842) print(min=0.9999999999995521,5.92,21.487) print(max=1.000000018250125,5.92,21.131) \geooff \geoprint() Aus dem #946 kann ich die ursprüngliche Eingabe zurückholen und dann den fedgeo-Code nochmal neu erzeugen und er ist vollständig. Wenn bei Wiederholung der gleiche Fehler wieder auftritt, verwenden wir vielleicht unterschiedliche Programmversionen? \geo ebene(493.03,613.19) x(9.03,18.89) y(6.07,18.34) form(.) #//Eingabe war: # ##918 # # # # # # #P[1]=[0,100]; P[2]=[50,100]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,1,3); #L(5,4,3); M(6,1,2,blauerWinkel); N(7,2,6); M(8,6,7,gruenerWinkel); N(9,7,8); #L(10,8,6); L(11,2,7); N(12,11,9); # #P[13]=[P[11][0]+2*(P[6][0]-P[10][0]),P[11][1]+2*(P[6][1]-P[10][1])]; # #Q(14,5,13,ab(5,2,[1,5]),D); Z(13,14); #L(13,15,17); Q(18,11,14,D,ab(5,2,[1,5])); N(22,18,12); A(21,22); # #L(23,22,12);N(24,23,9);M(25,24,23,orangerWinkel);N(26,23,25);N(27,26,25); #N(28,26,27);N(29,28,27); #N(31,25,24);N(32,31,9); # #P[33]=[P[31][0]+2*(P[23][0]-P[22][0]),P[31][1]+2*(P[23][1]-P[22][1])]; #Q(34,29,33,ab(5,2,[1,5]),D); Z(33,34); #L(33,35,37);Q(38,31,34,D,ab(5,2,[1,5]));N(42,38,32); A(41,42); # #A(9,32,ab(9,8,[1,9],[11,42])); # #R(19,28); # # # # #M(100,13,17,vierterWinkel); #P[101]=[P[13][0]+6.2099*(P[100][0]-P[13][0]), #P[13][1]+6.2099*(P[100][1]-P[13][1])]; # # #R(39,46); #R(33,101);A(101,13); # # # # # # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10,12,P1) p(11,12,P2) p(10.5,12.866025403784437,P3) p(9.5,12.866025403784437,P4) p(10,13.732050807568877,P5) p(10.997564050259824,11.930243526255875,P6) p(11.997564050259824,11.930243526255873,P7) p(11.794648721879215,11.326375969361642,P8) p(12.794648721879215,11.32637596936164,P9) p(10.873141741277868,10.93801417321919,P10) p(11.559192903470748,12.829037572555041,P11) p(12.356277575090138,12.225170015660808,P12) p(9.032927941175524,15.482699725267967,P13) p(11.032570406422906,15.444884236650536,P14) p(9.516463970587763,14.60737526641842,P15) p(10.51628519044985,14.588467529802955,P16) p(10.032749173799214,15.46379198095925,P17) p(10.783725788458995,13.460425530577165,P18) p(11.829655078042295,14.841016679756304,P19) p(10.90814811222632,14.452654881759814,P20) p(11.70523276906034,13.848787326719618,P21) p(11.58081046007839,12.85655797368294,P22) p(12.515342028875011,13.212438216071476,P23) p(12.953713175664088,12.31364416977231,P24) p(12.694894130561568,13.279569996061378,P25) p(12.256522983772493,14.178364042360545,P26) p(13.254087034032317,14.108607568616417,P27) p(12.815715887243242,15.007401614915585,P28) p(13.813279937503067,14.937645141171458,P29) p(13.660819956850636,13.020750950958856,P31) p(13.501755503065763,12.033482750548188,P32) p(15.015440757324189,16.536022244137776,P33) p(15.798595523409835,14.695731883255199,P34) p(14.414360347413627,15.736833692654617,P35) p(14.805937732258844,14.816688527005082,P36) p(15.407018140367011,15.61587706369649,P37) p(13.929532385816593,13.983971398478122,P38) p(15.639531069624962,13.708463682844531,P39) p(14.864063959916242,14.339851626941055,P40) p(14.70499950082834,13.35258344045599,P41) p(13.770467932031721,12.996703198067452,P42) p(15.247087904188923,12.826166911602153,P43) p(14.539981123002374,12.119060130415606,P44) p(15.505906949291443,11.860241085313085,P45) p(16.21301373047799,12.567347866499633,P46) p(16.471832775580513,11.601422040210565,P47) p(14.49237832396615,12.170107882611646,P48) p(13.785271542779602,11.463001101425098,P49) p(14.73079011837892,11.137432946967941,P50) p(13.74016729747853,11.000807814904483,P51) p(18.39355170745325,11.047349529719472,P52) p(16.952851371892972,9.660128371029732,P53) p(17.43269224151688,11.32438578496502,P54) p(16.712342088200504,10.630775209204014,P55) p(17.673201539673112,10.353738950374602,P56) p(15.72558688066787,11.239312295902948,P57) p(15.962228550992588,9.523503238966272,P58) p(16.339219114514584,10.449720324322506,P59) p(15.348596305380033,10.313095201402882,P60) p(14.734964059767481,11.102687163839484,P61) p(14.325795782921736,10.190228221627242,P62) p(13.380277207322418,10.515796376084399,P63) p(14.246302611106858,10.015796376084399,P64) p(15.191821186706171,9.69022822162724,P65) p(14.437111606483398,9.034169192636735,P66) p(15.382630182082714,8.708601038179577,P67) p(14.627920601859941,8.05254200918907,P68) p(13.380277207322418,9.515796376084399,P69) p(12.794648721879213,10.32637596936164,P70) p(14.908087822488444,6.072262653015983,P71) p(13.053031983138405,6.819770400730565,P72) p(14.768004212174194,7.062402331102526,P73) p(13.840476301684038,7.436156193225983,P74) p(13.980559902813425,6.446016526873274,P75) p(13.871368536829898,8.64468828515505,P76) p(12.4674034976952,7.630349994007807,P77) p(13.462200246387454,7.732229349039891,P78) p(12.876571774540945,8.542808936220048,P79) p(13.28574005138669,9.455267878432288,P80) p(10.031632597096815,15.533582042836422,P100) p(15.234783983981146,15.798673829136316,P101) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P1,P4) s(P3,P4) s(P4,P5) s(P3,P5) s(P15,P5) s(P1,P6) s(P2,P7) s(P6,P7) s(P6,P8) s(P7,P9) s(P8,P9) s(P49,P9) s(P8,P10) s(P6,P10) s(P2,P11) s(P7,P11) s(P11,P12) s(P9,P12) s(P15,P13) s(P17,P13) s(P16,P14) s(P17,P14) s(P19,P14) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P11,P18) s(P20,P18) s(P21,P18) s(P19,P20) s(P14,P20) s(P19,P21) s(P20,P21) s(P22,P21) s(P18,P22) s(P12,P22) s(P22,P23) s(P12,P23) s(P23,P24) s(P9,P24) s(P24,P25) s(P23,P26) s(P25,P26) s(P26,P27) s(P25,P27) s(P26,P28) s(P27,P28) s(P28,P29) s(P27,P29) s(P35,P29) s(P25,P31) s(P24,P31) s(P31,P32) s(P9,P32) s(P48,P32) s(P35,P33) s(P37,P33) s(P36,P34) s(P37,P34) s(P39,P34) s(P35,P36) s(P29,P36) s(P35,P37) s(P36,P37) s(P31,P38) s(P40,P38) s(P41,P38) s(P39,P40) s(P34,P40) s(P39,P41) s(P40,P41) s(P42,P41) s(P38,P42) s(P32,P42) s(P43,P44) s(P43,P45) s(P44,P45) s(P43,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P54,P47) s(P43,P48) s(P44,P49) s(P48,P49) s(P44,P50) s(P49,P50) s(P9,P51) s(P50,P51) s(P54,P52) s(P56,P52) s(P55,P53) s(P56,P53) s(P58,P53) s(P47,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P50,P57) s(P59,P57) s(P60,P57) s(P53,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P61,P60) s(P51,P61) s(P57,P61) s(P51,P62) s(P61,P62) s(P9,P63) s(P62,P63) s(P63,P64) s(P62,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P65,P67) s(P66,P67) s(P66,P68) s(P67,P68) s(P73,P68) s(P63,P69) s(P64,P69) s(P9,P70) s(P69,P70) s(P73,P71) s(P75,P71) s(P74,P72) s(P75,P72) s(P77,P72) s(P68,P74) s(P73,P74) s(P73,P75) s(P74,P75) s(P69,P76) s(P78,P76) s(P79,P76) s(P72,P78) s(P77,P78) s(P77,P79) s(P78,P79) s(P80,P79) s(P70,P80) s(P76,P80) s(P13,P100) s(P13,P101) pen(2) color(#008000) m(P7,P6,MA10) m(P6,P8,MB10) b(P6,MA10,MB10) color(#0000FF) m(P2,P1,MA11) m(P1,P6,MB11) b(P1,MA11,MB11) color(#FFA500) m(P23,P24,MA12) m(P24,P25,MB12) b(P24,MA12,MB12) color(#EE82EE) m(P17,P13,MA13) m(P13,P100,MB13) f(P13,MA13,MB13) pen(2) color(red) s(P19,P28) abstand(P19,P28,A0) print(abs(P19,P28):,9.03,18.336) print(A0,10.33,18.336) color(red) s(P39,P46) abstand(P39,P46,A1) print(abs(P39,P46):,9.03,18.036) print(A1,10.33,18.036) color(red) s(P33,P101) abstand(P33,P101,A2) print(abs(P33,P101):,9.03,17.736) print(A2,10.33,17.736) print(min=0.9999999870952149,9.03,17.436) print(max=6.2099,9.03,17.136) \geooff \geoprint() Der #953 hat nur einen beweglichen Winkel auf der linken Seite, damit lässt sich nur eine der beiden Restkanten einstellen, die andere passt nicht. \geo ebene(324.84,388.6) x(9.28,17.85) y(12.08,22.33) form(.) #//Eingabe war: # ##953 # # # #P[1]=[49.01,94.64]; P[2]=[86.09,86.78]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); Q(7,1,6,ab(5,1,[1,6]),D); #Q(12,11,7,ab(5,1,[1,6]),D); M(17,16,15,blauerWinkel); A(16,17,ab(5,4,[1,11])); #N(27,21,12); N(28,22,27); L(29,28,27); Q(30,26,28,ab(5,1,[1,6]),D); #A(5,34,ab(5,34,[1,34],"gespiegelt")); N(67,63,30); N(68,6,39); A(68,29); #R(68,29); A(68,62); R(68,62); A(67,29); R(67,29); A(67,62); R(67,62); # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(11.293006624067804,12.49684037751024,P1) p(12.27126995033661,12.289473879547113,P2) p(11.96172294233209,13.240358020668127,P3) p(12.939986268600896,13.032991522704998,P4) p(13.249533276605415,12.082107381583985,P5) p(12.630439260596376,13.983875663826014,P6) p(11.743352318639834,14.44547804403022,P7) p(11.518179471353818,13.471159210770232,P8) p(10.561808186722045,13.1790052001324,P9) p(10.78698103400806,14.15332403339239,P10) p(9.830609749376286,13.861170022754557,P11) p(11.221382593049883,15.298442055913227,P12) p(10.525996171213086,14.579806039333892,P13) p(9.555945913862526,14.822710337801656,P14) p(10.251332335699326,15.541346354380988,P15) p(9.281282078348767,15.784250652848751,P16) p(10.250627757881844,16.029951596213962,P17) p(9.825061240505692,17.708907563262635,P18) p(9.55317165942723,16.74657910805569,P19) p(10.522517338960307,16.992280051420906,P20) p(11.219973437414922,16.275652539579177,P21) p(11.739481017500536,17.130118381045992,P22) p(10.782271129003114,17.419512972154312,P23) p(10.554289252372019,18.393178347900907,P24) p(11.511499140869443,18.103783756792588,P25) p(11.283517264238348,19.077449132539186,P26) p(12.093181790720047,15.788305464366704,P27) p(12.61268937080566,16.64277130583352,P28) p(13.092924706139161,15.76563162328739,P29) p(12.674964836097075,17.640830305303357,P30) p(11.979241050167712,18.359139718921273,P31) p(12.253453357173647,19.320808898362145,P32) p(12.949177143103011,18.60249948474423,P33) p(13.223389450108948,19.564168664185104,P34) p(15.203113867967534,12.510503078403216,P35) p(14.226323572286475,12.2963052299936,P36) p(14.529217941968309,13.249329364428318,P37) p(13.55242764628725,13.035131516018703,P38) p(13.855322015969083,13.988155650453422,P39) p(14.739161472847764,14.45594600356515,P40) p(14.971137670407646,13.483224540984184,P41) p(15.929527266589062,13.197761089853877,P42) p(15.69755106902918,14.170482552434844,P43) p(16.655940665210593,13.88501910130454,P44) p(15.25515766993776,15.312536877079843,P45) p(15.955549167574176,14.59877798919219,P46) p(16.92387824548002,14.84845537479613,P47) p(16.2234867478436,15.562214262683781,P48) p(17.19181582574945,15.81189164828772,P49) p(16.22077678023375,16.050812497281612,P50) p(16.634599829678653,17.73270146024799,P51) p(16.913207827714054,16.772296554267854,P52) p(15.942168782198355,17.011217403261742,P53) p(15.249737734718051,16.289733346275497,P54) p(14.724271562272651,17.140547839344105,P55) p(15.67943569597566,17.436624649796045,P56) p(15.900607723504306,18.41185945959257,P57) p(14.9454435898013,18.115782649140627,P58) p(15.16661561732995,19.09101745893716,P59) p(14.379956439680067,15.796295914778806,P60) p(13.854490267234674,16.64711040784741,P61) p(13.380396388551967,15.76663610714602,P62) p(13.785241570143505,17.644709835449078,P63) p(14.475928593736725,18.36786364719312,P64) p(14.195002533719453,19.327593061561128,P65) p(13.504315510126203,18.60443924981709,P66) p(13.233009507211555,16.811019396095283,P67) p(13.240118443389878,14.776523942741857,P68) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P36,P5) s(P38,P5) s(P3,P6) s(P4,P6) s(P8,P7) s(P10,P7) s(P6,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P8,P10) s(P9,P10) s(P9,P11) s(P10,P11) s(P13,P12) s(P15,P12) s(P7,P12) s(P11,P13) s(P11,P14) s(P13,P14) s(P13,P15) s(P14,P15) s(P14,P16) s(P15,P16) s(P19,P16) s(P16,P17) s(P19,P17) s(P20,P17) s(P18,P19) s(P18,P20) s(P19,P20) s(P20,P21) s(P17,P21) s(P21,P22) s(P23,P22) s(P25,P22) s(P18,P23) s(P18,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P24,P26) s(P25,P26) s(P21,P27) s(P12,P27) s(P22,P28) s(P27,P28) s(P28,P29) s(P27,P29) s(P31,P30) s(P33,P30) s(P28,P30) s(P26,P31) s(P26,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P65,P34) s(P66,P34) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P39,P40) s(P41,P40) s(P43,P40) s(P35,P41) s(P35,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P40,P45) s(P46,P45) s(P48,P45) s(P44,P46) s(P44,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P52,P49) s(P49,P50) s(P52,P50) s(P53,P50) s(P51,P52) s(P51,P53) s(P52,P53) s(P50,P54) s(P53,P54) s(P54,P55) s(P56,P55) s(P58,P55) s(P51,P56) s(P51,P57) s(P56,P57) s(P56,P58) s(P57,P58) s(P57,P59) s(P58,P59) s(P45,P60) s(P54,P60) s(P55,P61) s(P60,P61) s(P60,P62) s(P61,P62) s(P61,P63) s(P64,P63) s(P66,P63) s(P59,P64) s(P59,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P63,P67) s(P30,P67) s(P29,P67) s(P62,P67) s(P6,P68) s(P39,P68) s(P29,P68) s(P62,P68) pen(2) color(#0000FF) m(P15,P16,MA10) m(P16,P17,MB10) f(P16,MA10,MB10) pen(2) color(red) s(P68,P29) abstand(P68,P29,A0) print(abs(P68,P29):,9.28,22.334) print(A0,11,22.334) color(red) s(P68,P62) abstand(P68,P62,A1) print(abs(P68,P62):,9.28,21.939) print(A1,11,21.939) color(red) s(P67,P29) abstand(P67,P29,A2) print(abs(P67,P29):,9.28,21.543) print(A2,11,21.543) color(red) s(P67,P62) abstand(P67,P62,A3) print(abs(P67,P62):,9.28,21.147) print(A3,11,21.147) print(min=0.9999999999999918,9.28,20.751) print(max=1.054731883953327,9.28,20.356) \geooff \geoprint() Zum #955: Feinjustieren(i) bedeutet, mit den ersten i Winkeln werden die ersten i farbigen Kanten eingestellt. Hier sind es drei Winkel, also muss Feinjustieren(3) eingestellt werden (mit dem "+" rechts von Button "Feinjustieren(1)" oder im großen Eingabefenster im Element "Feinjustieren" das Attribut "Anzahl"). Dazu müssen drei farbige Kanten zum Einstellen ausgewählt werden. Die Auswahl muss so erfolgen, dass die Aufgabe lösbar wird, wie, das ist mit Worten allgemein nicht so einfach zu beschreiben. Hier ist es Kante P5-P30, die schon allein mit dem blauen Winkel eingestellt wurde, dazu kommen noch die beiden Kanten P20-P67 und P15-P68, die mit dem grünen und orangen Winkel eingestellt werden sollen. Das heißt, die drei Kanten P5-P30, P20-P67 und P15-P68 müssen die drei ersten farbigen Kanten sein, die Eingabe R(11,33) muss dahinter gesetzt werden. Bisher bin ich mit dem Prinzip "erste i Winkel und Kanten werden justiert" gut zurechtgekommen. Wenn klar ist, wie das funktionieren soll, kann man sich auch eine Zuordnungstabelle oder ähnliches überlegen, das bisherige braucht nicht die endgültige Eingabevariante zu sein. Probier es mal aus, es geht, ich habe es geschafft und will mal die Lösung nicht vorwegnehmen, es fehlt ja nicht mehr viel.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.959, vom Themenstarter, eingetragen 2017-04-29

Also der Graph in #934 ist nicht starr und die Kanten bzw. Knoten in der Mitte können beliebig nahe angenähert werden. Wenn ich es nicht mit eigenen Augen sehen würde, würde ich es nicht glauben. ;-) Aber so ist es nun mal. Ist aber auch nicht schlecht. Jetzt brauchen wir einen neuen starren Extremgraphen. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_flex_neu_394_-_slash.png


   Profil
-->> Fortsetzung auf der nächsten Seite -->>
Seite 24Gehe zur Seite: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62  

Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]